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P 183

P ZI0

P 225

ERRATA

Figure 4.1 S1 and SZ should be labeled RST

A space is required between SXX and (4)

A space is required between PXX and($ )

A double space is required after the symbol G
in the G Card Format. Also in Figure 4.5 (a)

the amplitude of P (_) should be 1/20 rather than

1/40,

Figure 4.18 the NO exit on the decision block

for "N"? goes toERRO.

The YES exit on (MATL)16=07 goes to AND, the
NO exit goes to OR.

The YES exit from both TBIT=0? decision blocks

goes to ANDX. The two boxes with no exits go

to EXIT.

Figure 4, 30. A line should be added from

TINP to the decision block immediately below.

The NO exit from the decision block ACC=I?

goes to EXIT.

Figure 6.3, The labels on the cross hatching

are reversed.

The first line should read Table 7.5.

Figure A-I (a). P_ (t) should be a square

pulse between 300Xand 400.
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ABSTRACT

A brief summary of worst case and statistical design

techniques is given along with a discussion of the applicability of

these techniques to the design of digital systems using micro-

circuits. A technique for statistical optimization using component

sorting on the basis of propagation delays is presented and a few

examples of the expected improvement are shown. A discussion

of the available technique for evaluation of statistical design

results in the evaluation of a digital computer program for the

DDP-I 16 computer.

This computer program, using Monte Carlo techniques

and a simulation of the system under test, is designed to be a

useful engineering tool.

the part of the designer,

It requires no specialized knowledge on

other than his ability to read logic

diagrams and component specification sheets.

Some design examples, using the statistical techniques

and the computer evaluation, are used to demonstrate the applic-

ability to digital system design.

ii
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CHAPTER I

INTR ODUC TION

1.1 The Design Problem

The art of design is far less precise, generally, than

the science of analysis. The major difference is in the nature of

the problem. In analysis the problem is usually closed, that is,

the system or circuit is already constructed, at least concept-

ually, and its behaviour is fixed by constraints. On the other

hand, the nature of the design problem is open, the desired per-

formance only is often specified, and the solution to the problem

is only limited by the experience and ingenuity of the designer.

It is, however, often possible to divide a design prob-

lem into two phases. The first phase, where the system or circuit

configuration is determined by the designer, is mainly a creative

phase and, as such, does not lend itself to formalization. The

second phase is generally one of optimization with regard to some

set of parameters. Most of the so-called design techniques are

really optimization techniques when viewed in this context. It is a

proposed optimization technique which is the subject of this thesis.
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1.2 Worst Case Design Techniques

An excellent and widely used design technique is "worst

1
case design." Worst case design has been defined by Pressman

11

as designing so that the circuit will still work when all supply

voltages and active and passive components are simultaneously at

those extremes of their tolerance limits that will tend most to

make the circuit inoperative". Pressman's definition was meant

for circuits, but with appropriate changes in parameters could

equally apply to systems. Most digital systems, designed today,

in fact, use worst case design on all timing considerations.

In practice, the worst case design criteria must be

• slightly modified upon consideration of correlations between para-

meter variations. For example, the use of a common supply

voltage bus precludes using at one extreme in one portion of a

system and at the other extreme in a different portion. Again,

consideration of the effect of thermal variations must allow for

correlation in parameter changes. A fine illustration of this effect

2
is found in "Transistor Circuit Design".

Worst case design techniques are widely used and

relatively easy to apply; however, they are subject to limitations

which may be important in many design environments.

I
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First, in many cases of interest, there is no solution

to the worst case design equations unless extremely tight

tolerance limits are imposed on the active and passive components.

The need for precise components causes increased component

cost. This limitation raises an interesting question, which will be

discussed at length in this thesis, "Are there more effective ways

to sort components than on the basis of tolerance limits ?"

Secondly, worst case design procedure only assures no

failures in the completed equipment if the component suppliers

have met their tolerance limits and if there have been no so-called

catastrophic failures in the production process. Put differently,

worst case design does not guarantee immunity from trouble

shooting and de-bugging.

Third, there is no knowledge obtained from a worst

case design about the amount of penalty to be paid for leaving the

"safe design area". All that is known is that the possibility of

failure exists; nothing is determined about the probability of

failure.

Finally, there is no assurance that a worst case design

is optimum in all respects. In particular, Ware and Becker 3

I
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discuss the point that a worst case design may actually yield a

circuit which is less than optimum from the standpoint of

reliability (mean time between failures).

1.3 Statistical Design Techniques.

Another approach to design optimization is statistical

analysis of the system in question. As presentiy utilized, statis-

tical design is not so much an alternative to worst case design as

it is a supplement to it. This point is aptly illustrated in Pro-

fessor Gray's "Digital Gomputer Design ''4 which contains, as well,

a very lucid discussion of statistical design techniques in general.

Briefly, the statistical distributions of the various

component parameters are assumed known; then in many cases

standard analytical techniques are used to transform the parameter

variations into system output statistics. In other cases, it is

necessary to model the system and apply Monte Carlo techniques

to obtain the same information.

The major advantage claimed for statistical design is

that it allows the establishment of trade-offs between component

tolerance, system performance, and failure rates in fabrication.

These trade-offs when interpreted in a particular design

I
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environment {economic factors, reliability, etc.) allow the

designer much more flexibility in fulfilling his goals.

The major objections to statistical design fail into two

categories.

(a) The data is unavailable. The statistical

data required is not available from the com-

ponent supplier or it is in such a form as to be

unyielding to statistical techniques. The data

supplied by the manufacturer is also rapidly

obsolete as the production process is modified.

This unavailability of data is particularly pro-

nounced with active components. It should not,

however, be inferred that this data is impos-

sible to obtain; it is expensive to obtain in many

cases and there has been no real demand for it

on a large scale.

(b) Considerable expense is involved. In all but

the most trivial cases, statistical analysis re-

quires the use of a digital computer and the

associated costs are significant. Since the cost

of the analysis is spread over the entire output,

its use in low volume production cannot often be

justified economically. It is worth noting in this

connection that the lease or purchase of a digital

computer is not always necessary. At least one

I
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firm 5 offers to subcontract the statistical

analysis of circuits in its entirety.

It is true, however, that any consideration of the appli-

cability of statistical design must be viewed in the light of these

two objections.

1.4 Microcircuitry Considerations

One of the most dramatic advances in the field of

digital systems has been the development of monolithic silicon

microcircuits. From a relatively exotic beginning in the missile

and space industry, the microcircuit has become a widely used

digital system component in only five years.

Detailed discussions of microcircuits are readily

available in the literature; several journals 6' 7 have devoted entire

issues to them. For the purposes of this report, their main pro-

perties are summarized below:

(a) Small size and low weight.

(b) High speed.

(c) Reliability. (A good bit of this is extrapolated

transistor data. )

(d) Relatively high tooling costs for new circuit

designs.
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(e)

(f)

Difficulties in obtaining log delays. The mono-

lithic circuits obtain the delays from p-n junction

capacitance. For this reason it is difficult to

obtain values in excess of picofarads.

A rather large spread in the values of propagation

delays. From representative manufacturers'

specification sheets the spread in propagation is

usually an appreciable portion of the mean

propagation delay, usually at least + 25°7o, often

times considerably more. This spread can be

reduced by selection but at added expense to the

user.

Properties a, b, and c listed above indicate that micro-

circuits are particularly well suited for use in digital systems.

The high tooling costs mean that utilization is restricted to high

volume production for new circuit designs or to the use of

commercially available circuits. In either of these cases, the

high tooling cost is spread over many thousands of units. The

difficulty in obtaining long time delays can usually be overcome

by a hybrid approach using external capacitors. It is reasonable

then to expect that an increasing proportion of digital systems

will be composed Of microcircuits.

Industry clearly shares this view. The IBM 360 com-

puter, already on the market, uses the hybrid microcircuits (thin

films for passive components, silicon chips for active elements)

I
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Discussions with representatives of other computer manufactures

indicate a consensus that the next generation of computers will be

almost entirely composed of microcircuits.

A projected usage curve for microcircuits was shown

at the 1964 IEEE International Convention. This report 8 represents

industry thinking near the end of 1963 and is shown in Figure 1.1

Viewed from the vantage point of 1966, this estimation was not

8
overly optimistic. In particular, the prophesy of Maier that "In

high volume areas, where standardization is feasible, semi-

conductor circuits may equal the cost of conventional discrete

assemblies in the next few years", has been essentially fulfilled.

The large spread in propagation delays mentioned

earlier becomes increasingly important when the system design

using microcircuits is considered. This design differs from

design with conventional components in that the number of para-

meters are fewer. Instead of resistors, transistors, diodes, etc.,

the circuit is the component and the parameters of interest to the

designer are:

a)

b)

c)

fan in and fan out limits

rise and fall times

power dissipation

I
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_. Number of Circuits (Billions)

3 Project Share

Using Microcircuits

2
m

1959 964 1969 1974

Figure 1.1 Projected Use of Microcircuits.

(From "Integrated Circuits in Indus-

trial Equipment" Leonard C. Maier.

IEEE SpectrumVol. 1, No. 6, June,

1964.}
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d) propagation time

i0

In analogy to circuit design, where the object was the

optimum choice of discrete components for a specific circuit job,

the system design with microcircuits has for a goal the optimum

selection of circuits to form a system block. This is a problem

to which the design techniques previously discussed can be applied.

In particular, the area of interest to this thesis is the application

of statistical design techniques to the transient response of digital

systems. The wide spread in propagation delays of an individual

microcircuit indicates that such an approach might yield signi-

ficant improvement in system performance or significant reduction

in system cost for a given performance.

1.5 Component Sorting

A widely used technique in the fabrication of electronic

equipment is the selection of components. In this case, a compo-

nent which meets almost all the requirements set for it is selected,

then, as the components are manufactured, it is tested and only

those units meeting all of the specifications are used in the

equipment. An example would be the choice of a transistor of a

given type, but only the acceptance of those units having an alpha

i
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cutoff frequency in excess of i0 mc. This results in a higher unit

price for the components because of the added testing required

and because of the lowered effective yield. This higher price can

often be economically justified by a decrease in the complexity of

the associated circuitry.

A related technique which has not had such widespread

use is that of sorting components. In this case the components

are all accepted but are divided into different classes on the basis

of some parameter. Note the distinction, selection implies that

some components originally produced are not used, sorting implies

all are used.

An obvious application of sorting is to make those com-

ponents in critical places the members of the best class of the

sort, putting the others into non-critical portions of the system.

However, it is pointed out in Chapter II that the mere act of

sorting, with no attempt to place components in any special order,

can improve the performance of a system.

It is then the purpose of this paper to investigate the

applicability of statistical design techniques to the transient

response of digital system, particularly the applicability of

I
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component sorting on a statistical basis, and to develop a useful

engineering tool for the application of these techniques.
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CHAPTER II

THE EFFECT OF COMPONENT SORTING ON THE TIMING

PERFORMANCE OF A DIGITAL SYSTEM

2.1 Identical Elements in Sequence

In many important applications, identical elements are

triggered sequentially. An excellent illustration is a binary

counter, as shown in Figure 2. l(a). I/ere the maximum rate at

which the counter can be used is the ripple time, that is, the time

it takes for the counter to change from all l's to all O's. This

time is the sum of the propagation times of each of the individual

counter components. Suppose that the elements are all of the same

type and that the propagation delay of each component is specified

by a probability density function as shown in Figure 2. l(b). The

maximum time delay is 6 2 and the minimum delay is 5 1 " If the

counter contains M stages then the maximum possible ripple time

is clearly M6 2 and the range of possible ripple times is M(6 2-5 1).

Suppose now that the total population of the element

type are sorted into M sets, 5k, such that each of the sets has the

same population. An element is put into set 5 k if its propagation

delay is less than that of any element in set 5 k+l and greater than

that of 5 k-l" To do this conveniently would require a knowledge

of the propagation delay density function.

13
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I Pulses to

be counted.
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(a) A Binary Counter (M Stages)

6 6 ----_ 6
1 2

A Possible Density Function of Time

Delays for a Counter Element.

(b)

I
I

I

S

K\

61 2

! (c) A Possible Sort of the Function in (b)

! Figure 2.1 Hypothetical Delay Parameters for a

Binary Counter.
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The ripple counter is then constructed by choosing at

random one element from each of the.5 k" Now the longest possible

ripple time is given by the sum of the longest delays in each group.

Because the longest delay in the set, 5 M' with the longest delays

is 5 2' and because all the groups contain delays less than this

number, the new longest possible ripple time is less than M5 2' the

value obtained in the unsorted case. The amount of decrease will

depend on the shape of the probability density function, but the fact

that a decrease occurs depends only on the fact that 5 _ 5
2 1"

M M
! !

max min k k
k=l k=l

(2.1)

!

whe r e 5
max

= longest possible ripple time

!

5
min

= shortest possible ripple time

= longest delay in set k

= shortest delay in set k

If the original density function were at least piecewise

c ontinuous then:

5 k = k+l

I
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and

Range = 6Mr - 61_ = 62 - 61 (2.3)

The effect of sorting has been to reduce the range of

possible ripple times by a factor of 1/M.

The mean time delay of an unsorted element will be

defined as _x . If the delays of the elements in the counter may be

assumed statistically independent of each other then, the mean

ripple time is M_ . This is also true of the case with sorting as

the following analyses show .

If the delays of the elements are statistically independent

the mean of the sum of delays (ripple time) is equal to the sum of

the means or;

__,t _= 6 pk(6) d6 = N _ k (2.4)
k=l k= 1

6k[

where pk (6) is the probability density function of delays in the

k th set.

I
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I Note that

Pk(5 ) = M p(5) 6k_-= 0 -, OkT

!
= 0 elsewhere

I If we note the substitution

I ,_ _A _._

I k-1

5 5 1

I

O p(6 )dO

(2.5)

(2..6)

I = MI_

I
I
I

I

sorting,

Thus, the mean ripple time is not affect'ed by the act of

but the range of ripple times is reduced.

A qualitative insight into the behaviour of the variance

of the ripple time can be obtained by noting that for statistically

independent delays among the elements, the unsorted variance is

I
I

I

I

6 2 6_2

a = I (O-_ p(O) d0 = M O 2p(O) d0 - M_ d0

k=l

6 6
1 1

while for the case of the sorted components

(2.7)

I
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2
!

M

- Z
k=I

6k_

/
6kl

2
(6 -_k) pk (6) d6 (2.8)

= Z 62

k=I

_k_

M
' 2

pk(6)d6 - _ (_ k)
k=l

Where in (2.8) use is made of the fact that from the

definition of the meari

kl
! I

k . 6 Pk(6) d6 = (_ k )2 (2.9)

Using relation (2.5), it follows that

6
2

,2 f M ! 2a = M 62 p(6 ) d6 - _. (b k ) (2.10)

, O k=l
6

1

In order to evaluate the relative amounts of the variances

in the two cases the difference of equations (2.7) and (2. lO) is
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formed:

2 '2 2
-_ = -M_ +

M
' 2

_ k
k=l

(2.1 I)

To evaluate the sign of equation (2. II),

an inequality due to Cauchey which states:

use is made of

2 2
( _, a.b.) 2' <_ _ a. _ b

i,j=l 1 1 i=l 1 j=l J

(2.12)

letting a. = _ . b. = 1/M
1 1 1

M M

1 )2( _ _i _ _ ( z
i=l i=l

in this case

M

1
i=l

= _ M, then

M

2) ( Z 1
j=l Mz )

(2.1 3)

M
2 1 2

<_ _ Z _k (2.14)
l

Thus the effect of sorting is always to lower the

variance, effectively "tightening" the ripple time density function

about the mean. It is important to note that "identical" in the

sense used here refers only to the fact that the same statistics
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govern the propagation delay.

2.2 A Numerical Example

To gain a quantitative insight into the properties of

sorting, a few numerical examples were attempted. For simpli-

city in computation the uniform probability density function was

assumed for p(6 ).

Referring to Figure 2.2(a) and using the method of

impulse convolution described in Appendix A, the M th derivative of

the ripple time density function for the unsorted case was found to

be"

M

fM _ 1 7. (-1)JM! I(6 - Ma - jA)
A M (M-j) ] j!

j=l

(2.1s)

where in order to avoid confusion the symbol I(x) is used to denote

the unit impulse occurring at x rather than the customary 6 (x).

Integration of (2.15) yields the density function of the

ripple time

M

_. (-1)M (6 - Ma - ja)M-1u(6-Ma-jA)
A M (M-j)! j!

j=l

(z.16)

!
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Here U(x) is the unit S t e p occurring at x.

Another integration yields for the probability distribution

M

f-l _ l I ('l)j(6 -Ma-_A) M U(5-Ma-jA). (a.17)
A M (M-j) ! j!

j=0

Referring now to Figure Z.Z(b), and using the same

method, the density function for the sorted case is

, M-I

M (-I)JM! I(6-Ma-A [ 7, k+j] )
I M i

> k=O (Z. 18)
f - ,M _ (M-j) ! j!

A j=0

Recalling that A, =

ripple time density function

A/M, and integrating to find the

M

A M -i _ , __ M-I
-Ma-_[ [ _, k+j] /M-Iut6-Ma-M [_' k+j] )

k=O k=O

j=O

(M-j)! j! (M-l)!

(2.19)

And the density function is then given by

A M-1 ,M A M-1

M ""'(-1)J(6-Ma-M[Zo+k j] ! U(6 -Ma- _¢[ [ Z-1 M M _ = k=O
f,

(_) (M - j)! j_L
j=O

+j])

(2.20)
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Figure 2.3 shows a comparison of the density function

between sorted and unsorted cases for various values of M. In the

case of the uniform density, the effect is to compress the density

function about the mean by a factor of M. This is true because the

densities of the sorted elements are of the same shape as the

original density function. This is not a general case, however.

The results of sorting components with a uniform propa-

gation delay density is shown in Figure 2.4. To obtain these

graphs, the probability that the ripple time delay would exceed the

ordinate value was obtained for both the sorted and unsorted

systems. The difference between the two is a measure of the

improvement in performance obtained by the sorting operation.

This difference could be considered as that proportion of circuits

which were now made useable after sorting, if the maximum time

delay were fixed at that ordinate value.

2.3 Sorting by Twos

As a practical matter, it should be noted that the diffi-

culties in making a sort into M sets, increase as M is increased

and as the complexity of the shape of p(5) increases. As

mentioned in the introduction, the objections to statistical analysis
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on the basis of unavailability and changeability of statistical data

are not without validity. It would be desireable tokeep the sort as

simple as possible.

For this reason, the improvement obtainable by making

a sort into only two sets was investigated. The mean vahe of the

component distribution is the only statistic needed here; this is

comparatively easy to obtain.

As was seen earlier in this section (although not stated

in exactly this form), the spread in ripple time is equal to the sum

of the widths of density functions being convolved. Clearly a sort

by two's results in a decrease of ripple times by a factor of one

half, regardless of the number of elements in the rippling chain.

If there are an even number of elements in the rippling

chain of circuits, the mean will be unchanged as long as the number

of circuits from each of the two sets is the same. This is easily

proven by noting the following steps:

(a) Consider the circuits pairwise with one from

each set. Equation (2.6) states that the sum of

these two means is twice the mean of the unsorted

density function.
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Add the means of the M/2 pairs considered in

The mean of the sum is equal to the sum of the

means. Thus the mean of M elements sorted by

two's is the same as the mean of M unsorted elements.

If M is odd and there is one excess element, the mean

delay of the M cascaded elements will be less than, equal to, or

greater than the mean delay of M unsorted elements in so far as

the excess element is chosen from the lower sort, unsorted ele-

ments, or upper sort respectively.

A qualitative insight into the behaviour of the variance

under a sort by two's can be obtained in much the same manner as

the behaviour of the mean was obtained. First, if an even number

of cascaded elements is involved,

each pair yielding

2
' 2 2 2

cr = a - _+ -__

equation (2. II) can be applied to

2
+ 2_ (2.21)

In this case cr

2
elements in cascade

.

zs the variance of two unsorted

2

= 2(7D

2
(_
D

_+

is the variance of the unsorted elements.

is the mean of the upper sort.
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is the mean of the lower sort.

is the mean of the unsorted elements.

If the M/2 pairs are now cascaded, the variance of the

sum is equal to the sum of the variances.

I
Here is the result:

2

' D 2 M +2 2) 2
I _2 = M _r - -_- (_ +__ +M_

(2.22)

I

I

,2

Now _2 is the variance of the chain of M elements.

If a chain of M unsorted elements is considered, the

2

I variance will be M_ D
Equation (2.22) can be rewritten as

I
I

I

,2 2 M 2 + _I 2) + M 2_2 -- _ - -F (_+

where for purposes of comparison cr

the M unsorted cascaded elements.

2

(2.23)

now means the variance of

I If equations (2.11)and (2.23) are compared they differ

I

I
I

only by the quantity

M

,2 ,2 _ 2or2 - _ = _k

k=l

M 2 2)
- _(_+ - _.. (2.24)

I
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In Appendix B it is shown that equation (Z. 2.4) represents

a positive quantity. Thus the act of sorting by two's reduces the

variance of the ripple time, but by a lesser amount than does the

complete sort.

With the foregoing in mind, the numerical example of the

uniform distribution was repeated, using this time a sort by two's.

The results are plotted in Figure 2.5. No curve is shown for

M = 2, since in this case a sort by twds is a complete sort and the

curve is identical to the M = 2 curve in Figure 2.4. Note that in

regions where the probability of a delay is zero for both the sort

by two's and the complete sort, then the performance improvement

is equal for the two cases.

The data can be viewed in another light. Instead of

considering the improvement in performance by comparing prob-

abilities at a given time delay, a useful comparison is obtained by

comparing time delays at a given probability. In this way a

measure of the time saved can be obtained. Both the complete sort

and the sort by two's were compared with the unsorted delay at

various probabilities. The difference was called the time saved.

Figure 2.6 shows the time saved by the two methods. As a rule of

thumb, for the uniform density function assumed here, the sort by

I
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PERFORMANCE IMPROVEMENT a
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Figure 2.5 Performance Improvement Due to a

Sort by Two's for Various Numbers
#
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Probability that the time delay excess the ordinate
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Figure Z. 6 Comparison of Time Saved Between

Complete and Sort by Two's for Various
Values of M.
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two's achieves a saving of from 55% (M=10) to 75% (M=4),

able with a compIete sort.

obtain-

In an effort to determine whether the sort by two's

achieves the same results for other densities, the time saved by

a compiete sort was compared with the time saved by a sort by

two's for a triangular density function for chains of length 2, 4, 6,

8, and 10. In this case the sort by two achieved about 65% of the

saving obtainable with a complete sort.

It should be noted that this later data was obtained by

Monte Carlo simulation while that for the uniform density was

obtained by the mathematical analysis. Figure 2.7 shows a

representative data curve (M=4) from which the estimates of time

saving were made. To ensure the accuracy of the Monte Carlo

approach, several check points were obtained by analytical tech-

niques. No significant departures from the Monte Carlo values

were observed.

2.4 Non-Identical Elements in Sequences

In many cases of practical importance a pulse is

propagated through a chain of non-identical elements. That ia the

propagation delay of the elements in the chain is governed by
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different statistics. As a case in point, the rippling of a counter

is recognized by a chain of combinatorial logic. Here the delay

from input pulse to output recognition symbol is the sum of the

delays introduced by different types of circuits.

If we adopt the variance of the delay density function

as a measure of the spread of the delays from the mean and if the

elements are statistically independent then

M
2 2

G - _ G.
T 9

j=l

2

T variance of path delay

2
(Y.

J
= variance of individual delays

If one of the elements has a variance much larger

than the others, it will dominate the result and any sorting

involving the other components will have a negligible effect.

If instead of the variance, the range of possible delay

in the chain is used as a measure of the spread in delay, a similar

result follows since the range of the total path delay is the sum of

the ranges of the individual path delays.
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The situation is illustrated by an example shown in

Figure 2.8. There element type A dominates the total path and

any sorting done on element type B hasanegligible effect on the

total delay statistics.

Considerable effort could, at this point, be expended

in examining different types of probability density functions and

developing approximate rules for desireability of sorting among

components with different delay statistics. However, as the next

part indicates, a Monte Carlo type simulation appears desireable

for the evaluation of the statistical design. With a Monte Carlo

simulation, each case of chains of elements with different statistics

can be evaluated on its own merits with relative ease.
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(a) A Hypothetical Chain

6---4>

(b) Type a Element Delay Density

p(6)

(c) Type B Element Delay Density

A I + A 2 6

(d) Results of Sorting Both A and B Elements

(e)

G, + 2A . _!
r A1 2 =I

Results of Sorting Only A Elements

Figure 2.8 The Effect of a Large Disparity in

the Range of Delays for Different

Elements.
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CHAPTER III

EVALUATION TECHNIQUES

3. i Linear Techniques

There are several techniques for obtaining an

evaluation of the statistical behaviour of a system. Objections

can be found to each of them, however, and the problem is to

select the optimum technique.

The first technique is the use of the central limit

theorem which states that the limiting form of the probability

density function of the chain of delays will approach the gaussian

density function. The mean of the gaussian function is the sum of

the means of the individual element delay density functions and its

variance is likewise the sum of the individual variances. This

technique has the advantage of simplicity. However, there are

distinct disadvantages :

(i) The validity of the gaussian limit is not very

good for short chains. The central limit theorem

applies as the number of links in the chain is made

very large.

37
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(2) The validity of the gaussian density function

decreases as one approaches the skirts of the

density function.

(3) Since the theorem is based on the use of sum

of weighted independent random variables, there

is an implicit requirement for a unique propa-

gation path.

(4) There is no provision in this model for the

case of a missed path, that is, a signal which has a

finite probability of missing a link. An example

would be the arrival of a transient at an AND gate

after its enabling signal has departed.

A very pertinent example of the use of this technique

is in PERT analysis, where the "propagation delays" are analogous

to the project durations. In the standard usage of PERT, the

project durations are each presumed to have a beta distribution

whose statistics can be obtained from the customary "pessimistic,

average, and optimistic" estimates of the project duration. Since

in a PERT analysis a job completed is never undone, the fourth

objection does not apply. Van Slyke 9 has provided an excellent

!
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analysis of the effect of other objections on the validity of the

results. Figure 3.1 in particular points out the effect of multiple

critical paths on the resultant delay distribution function.

The real significance of objection number three is

perhaps best illustrated by a specific example. Consider the AND

gate of Figure 3.2. This gate has two inputs with the given density

functions of arrival times of on-going transients. Here they over-

lap, and one input does not uniquely determine the initiation of

the propagation delay, since it is the last positive transient which

causes the signal to propagate through the gate.

The probability that the propagation delay is initiated

at time t is given by:

Note that:

p(t) = PA(t) p(b < t) + PB(t) p (a < t) (3.1)

where Px(t) is the probability that input X has a transient arrive

at time t.

p(X < t) is the probability that the transient on input X has

occurred prior totime t.

t

p(x < t) = f_ Px (t) dr. (3.2)
oo
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AB _ OUTPUT

(a) Two Input and Gate

p(t) ["

p(t)

(b)

(c)

Arrival Time Density of Input B

I T+A

T t

Arrival Time Density of Input A

p(t)

(d)

r/4 ,I
t

Time of Initiation of Propagation

Density Function

Figure 3.2 Non-Linear Effects at AND Gates.
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For the example shown then

p(t) = 0 t < T (3.3)

t I

- az +_7-(t-T)
T< t< A

= 1/A A< t< A+T

= 0 A+T< t

It is this density function which must be convolved

the propagation delay of the AND gate in question. It is clearly not

a linear function of the input arrival time density.

By extension of the reasoning contained above to the

case of a flip-flop, it can be shown that the requirement for

linearity eliminates from consideration conditions of "races" or

"hazards," which are often the prime considerations in the design

of a digital system.

The results of equation (3.1) can easily be generalized

for an N input gate into the form:
N

p(t) = _ p j (t) ]-[

j=l j4i

p (i< t) (3.4)
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A widely used statistical techni.lue which has the

advantage of overcoming the first two objections to the central

limit theorem application is the actual convolution of the density

functions involved in the chain. This is most expeditiously done on

a digital computer by the use of the impulse convolution technique

in those cases where a piecewise linear approximation is applicable

to the density functions in the chain. It is described in some detail

in Appendix A and can be used in those cases where a unique

critical path is certain and where its increased accuracy at the

skirts of the resultant density function is required.

3.2 Monte Carlo Technique

A third alternative is to _use the Monte Carlo technique.

In this method, the system is actually modeled a large number of

times. On each modeling, the parameter of interest (delay in our

case) is modified according to the statistics which govern that

parameter. The Monte Carlo technique overcomes most of the

previous objections since it makes no requirement of linearity.

It does require a large number of modelings in order to obtain

statistics of reasonable validity. This requirement can be trans-

lated into a requirement for a high speed digital computer for use

in the simulations. A discussion of the number of modelings

I
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required is contained in the paper by Van Slykeg.

A more serious objection to the use of Monte Carlo

techniques is that the data derived can not be verified. The tech-

nique is based on random number generating algorithms which are

in actuality pseudo random number generators. One such pseudo

random number generator is described in Appendix C. There are

numerous instances of apparently excellent random number

generators becoming pathological on closer examination. Lynch 10

relates the example of a generator in use for several years which

was subjected to the following test. Numbers were drawn in pairs

and used to form the x, y coordinates of a unit square. Instead of

the "random noise" pattern one would hope for, there existed

stripes where no points ever occurred. The point here is not that

the algorithm was bad; in many applications it was clearly

excellent. Nor is the point that the algorithm was not thoroughly

tested. These algorithms cannot be completely random; they are

pseudo random and limited in randomness by the finite size of

computer word. Many times the non randomness is hidden until a

particular case arises. An example of this non randomness is also

discussed in Appendix C.

;:'-Datacannot be checked always easily.
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Of all the evaluation techniques discussed the one

judged most suitable by the writer for use by digital systems

engineers was the Monte Carlo simulation. It was felt that the

risks inherent in the pseudo random number generator were more

than compensated by the ability to handle the non linear cases of

interest in digital systems. The risk in the use of the pseudo

random generation of numbers can be minimized in two ways:

(a) Any serial correlation effects (see Appendix

C for example) can be reduced by a semi-random

ordering of the random number selection. That is,

generate a group of numbers by an algorithm; then

select by a random scan of the group.

(b) If anomolies occur in the data outputed, an

alternate generating algorithm could be provided.

This may have its own pathology, but it is hoped

that the pathology of the two generating algorithms

is not common.

With this in mind a simulation routine was written for

the DDP-116 digital computer. The DDP-116 is high speed (3.4

sec add time) digital computer, and its programming is described

in the next two chapters.
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CHAPTER IV

THE SIMULATION PROGRAM

4.1 General Properties

Once the decision was made to perform the statistical

analyses of digital systems by Monte Carlo techniques, it was

necessary to design a computer program to this purpose. It was

determined to make the program as general as possible, so that

the result would be a general purpose simulator which could be

adapted easily to statistical analysis, rather than a program speci-

fically designed for Monte Carlo analysis. It was hoped that a

generally oriented main program could be obtained, with the

statistical operations imposed by selected subroutines.

A second goal was simplicity for the user. No know-

ledge of the computer hardware or software is assumed, the user

is presumed only to be familiar with the logic diagrams of the

system he desires to analyze, and the statistics he is applying.

It is felt that this approach will result in a more useful engineering

tool.

The requirements imposed on the user are first

illustrated by an example. Suppose that the circuit of Figure 4.1

46
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Sl $2 $3 $4

P5 (JK P5 (JK

P4

P3

G1 (NAND)

(a) Circuit Logic Diagram

_ D2_"
I I I
5 i0 15 2b

Periodic Pulse with Initial Phase

Single Pulse

-I
I
5

I I
5

Level Change

(b) Waveshapes for Input Signals

Figure 4.1 Circuit Example

I
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is to be analyzed. It should be noted that this circuit is not an

optimum circuit, but is utilized solely to permit discussions of

all card formats.

The user first inspects his logic diagram and assigns

numbers to his circuit units according to the following scheme:

(a) S numbers are assigned sequentially from

one to all storage elements.

(b) G numbers are assigned sequentially from

one to all combinatorial elements.

(c) P numbers are assigned sequentially from

one to all signals arising external to the system

under test.

The user then prepares one IBM care for each circuit

unit according to the formats shown in Figures 4.2 to 4.4 along

with specific examples of the cards drawn from the circuit of

Figure 4.1. The input list referenced in the G andS card formats

is merely that: a list of the circuit units providing inputs to the

element on the card. These inputs are specified by the G, S, or

P number of the system unit serving as input, with the addition in
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[XXXX-SXX

of

S element

Sn

XXX, XX, XX

Input list separated

by commas or blanks

(See list order below.)

_Initial status at T = 0 (Refers

to set side)

INPUT LIST ORDERING

ENTRY

STORAGE T YPE

RST JK

R INPUT

S INPUT

T INPUT

J INPUT

K INPUT

C INPUT

PJ INPUT

PK INPUT

NOTE The number of entries in the input list

must be 3 for an RST element, 5 for a

JK element.

S CARDS FOR THE S ELEMENTS OF FIGURE 4. i ARE:

FFRS-SI( 1)-NC, P1,

FFRS-S2(1)-NC, P1,

FFJK-S3(0)-P5, P5,

FFJK-S4(0)-P5, P5,

P2

SIS

$2S,

$3S,

P1, NC

P1, NC

Figure 4.2. S Card Format with Examples from

Figure 4.1

I
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P CARD FORMATS

(a) STEADY LEVEL

Ipxx (¢) - Nc
or 0 at t = 0

(b) LEVEL CHANGE AT TIME YY

i_xx _¢)- cH- A_., c
ti'_me of change

(c) SINGLE PULSE LEADING EDGE AT YY, DURATION ZZ

IPXX_¢) - cH - ATYY,D1 = ZZ, C
I

Duration

Time of leading edge

(d) PERIODIC PULSE TRAIN FIRST TRANSITION AT YY,

DURATION OF FIRST TRANSITION ZZ, AND DURATION

OF SECOND TRANSITION AA

PXX (¢) - CH - ATYY, D1

Time of leading

edge of first
transition

Duration after first transition

= ZZ , D2 = AA,

1
Duration after second transition

P CARDS FOR THE INPUTS OF THE CIRCUIT OF FIGURE 4.1

WOULD BE

Figure 4.3

P1 (9)-CH-AT8, D1 = 2, C

P2 (0)-CH-AT3, D1 = 7, D2 = 4, C

P3 (1)-CH-AT5, C

P4 (0)-NC P5 (1)-NC

P Card Format with Examples from Figure 4.1.

C
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IT - P = XX, G = XX, S = XXX

'_-_ . '_oL-PNo. _fofse_--ements
G elements

_No. of P elements

- represents a blank column

THE T CARD FOR THE CIRCUIT OF FIGURE

T - P = 4, G = 4, S = 4

4.1 is:

G CARD FORMAT

Type of
G element

GXX - - XX, XXX, XX,

[ Input list, separated

]_ by commas, or blanks
t_G number

NOTE - THE NUMBER OF ENTRIES IN THE INPUT

LIST IS EQUAL TO THE NUMBER OF INPUTS

SPECIFIED IN THE GATE TYPE.

G CARDS FOR THE G ELEMENTS OF FIGURE 4.1 are:

NAND3-GI--P3, S3R, $4S

AND3 G2--SIS, NC, $2S

OR2 - G3 --GI, G2

NOR3 - G4 - -P4, P4, G3

Figure 4.4 T and G card Formats with Examples

from Figure 4.1.
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the case of S elements that a suffix R or S is added to indicate

that the input comes from the Reset or Set output of the storage

element. In the case where an input is unconnected an NC entry is

required.

The order of the input list is unimportant in the case of

G cards; however, in the case of S cards the ordering shown in

Figure 4.2 must be followed.

The 1a cards are capable of describing various input

signals described in Figure 4.1.

The computer program developed for this thesis will

handle all of the types of circuit units shown in Figure 4.1. This

is not an ultimate limitation, merely a limitation imposed by con-

venience; additional circuit unit types (one shot multivibrators,

gated pulse generators, etc.) can be handled with suitable minor

modifications of the main program as noted in Appendix D.

Upon completion of the S, G, and P cards, a T card

is prepared according to the format shown in Figure 4.4. This

card serves as a list of the number of the various types of circuit

element cards and is included primarily to avoid an additional pass

of the other cards.

I
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The user then prepares a set of D cards which contain

the statistical information for the circuit elements' variation in

propagation time. The formats for typical types of delay statistics

are shown in Figure 4.5. One card is prepared for each element

type. In the case of storage element types, the delay may vary

according to which input is excited. If this is the case a separate

card for each input can be prepared. This latter case is the one

illustrated in Figure 4.5. Note that the formats on the D cards

depend on the nature of the statistics assumed.

When the cards are all prepared they are placed in the

card reader in the following order:

(a)

(b)

(c)

(d)

(e)

(f)

T Card

P Cards,

G Cards,

S Cards,

sequentially by P number

sequentially by G number

sequentially by S number

D Cards, no ordering re4uired.

a card with an ]_ in column 1, typically END.

tapes,

The user then loads into the machine the following

in the given order:

(a) The main program, i.e., the simulator,
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D CARD FORMATS

(a) UNIFORM DISTRIBUTION i
I

1) Gate Card

1/40

1 I
10 I0 20 30 6-----I>
I

D - - BXXX, WXXXXXXX G

Gate type idth of Delay

Shortest Delay

I 2) Storage Card

D XXXX - X - BXXX, WXXX

I L_Input number (See table with S card

format)

(b) TRIANGULAR DISTRIBUTION

I

I _mo_s_o_,o.m.!_<__
I (C)SLOPED DISTRIBUTION _/ _--_4)Slope

I
I

I 1) Gate card and storage card same as above through
BXXXX. Gate card only shown

I

I
I

I

D -XXXX - G BXXX, PBXXX, 1/MXX

Reciprocal Slope_ ----_

TYPICAL D CARDS

D NAND3 - G - B20, W20

D - FFRS - 2 - BI0, W25

D - OR2 - G - B5, PBI/64,

D - FFJK - 5 - B2, PBI/4,

I/M512

I/M256

I Figure 4.5 D Card Formats for Typical Density Functions

!
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(b) The Delay Package, subroutines corresponding

to the assumed statistics of the elements,

(c) The subroutine, or subroutines corresponding

to the type of analysis desired.

All that remains for the user to do is to press the start

button and to enter any requested information at the ASR-33

keyboard.

4.2 The Interconnection Matrix and Delay Table

The information contained on G and S cards is used

to generate an interconnection matrix within the computer. The

P cards are used to generate pseudo matrix elements and the D

cards are used to set up a delay table within the computer.

The interconnection matrix consists of a fixed number

of 16 bit computer words in each matrix line. The first word is a

label word, the second a clock word, and the remaining words

(the interconnection words) form a list of all possible input signals.

In the interconnection words following the clock word, the bits

from left to right represent the P inputs in sequence, then imme-

diately following, the G bits in sequence. When these are

exhausted, the bits taken two at a time represent the S elements in

I
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sequence. Two bits are used for each S element since in

general each S element provides two outputs. By convention,

first bit in the sequence of two represents the reset side, the

second the set side.

the

One matrix line is required for each G card. The

format for the label word is shown in Figure 4.6 and typical

examples are shown in Figure 4.10. As the input list of the G

cards is scanned by the computer, a one is entered into the bit

position in the interconnection words specified by that input.

Complete G card matrix lines are illustrated in Figure 4.9.

One matrix line is allotted each connected input in the

S card processing. There is then only one entry among the inter-

connection words for each line. The label word format for the S

cards is shown in Figure 4.7 along with some examples in Figure

4.10. Each line label corresponding to the same S card is

identical except that the input bit is changed to indicate which input

is represented by the matrixline. Matrix lines for the S cards

of the circuit of Figure 4.1 are shown in Figure 4.10.

Each P card is given one matrix line. Previously the

P cards were said to give rise to pseudo matrix lines. This is

!
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explained by noting that the P matrix lines are treated in the

simulation the same as the G and S lines with regard to the clock

words (as will be seen later); however, the P cards, representing

external signals, have no inputs from within the system, hence no

need for interconnection words. The words normally used for

interconnection, in a P matrix line are used to store signal shape

constants.

Referring to the P card formats in Figure 4.3 for

nomenclature, YY is stored initially in the clock word and in the

first interconnection word, ZZ in the next, and AA in the last. If

the P card in question does not use any or all of these times the

corresponding word is left blank. The format for a P card matrix

line label word is shown in Figure 4.8, with examples in Figure

4. I0, and complete P lines for the circuit of Figure 4.1 are shown

in Figure 4.9.

The number of words in a matrix line is obtained by

dividing the total number of possible inputs (P + G + 2S) by 16,

the number of bits in a computer word, ignoring any remainder and

adding three. Since the longest possible P line is 5 words, it is

convenient to make this a minimum matrix line length.
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P1

0000010010001000

0000000000001101

0000000000001101

0000000000000010

0000000000000000

P2

0000100010010000

0000000000000011

0000000000000011

0000000000000111

0000000000001000

G1

0000011000011110

0001101000000000

0010000000000100

1000000000000000

0000000000000000

G4

0001 001 00001 1 100

0000100100000000

0001000100000000

0000000000000000

0000000000000000

Figure 4.9.
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S1

0000010100001011

0000111100000000

I000000000000000

0000000000000000

0000000000000000

0000010100010011

0001001000000000

0100000000000000

0000000000000000

0000000000000000

$2

0000100100001011

0010011000000000

I000000000000000

0000000000000000

0000000000000000

0000100100010011

0010100000000000

0000000000100000

0000000000000000

0000000000000000

Typical Matrix Entries for

the Circuit of Figure 4.1.

!
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G LABEL WORDS

AND Z - G4 - - SZS, Pl,
i i

Iooo 1 o o ooooo 1 o,o I ol
No_4-G_2--P2,s_R, Gs, Nc

,l°° _ _ oo _ ooo _ oo _ ool
OR3-G5--G4,Sl0S,G2
I000_ 0_ 00000_ _ 0001
NAND3-G8--PI,NC,G14
100X 00010000 I I l l 01

S LABEL WORDS

FFRS - SZ(1) - S3R, $3S, Pl (R input shown)

Io 0 0 0 1 o o 1 0 0 0 0 0 1 1 11

FFRS - $3(0) - NC, G4, PZ (T input shown)

[0 0 0 0 1 1 00 0 0 01 0 0 1 1

FFJK - $4(1) - SIR, SIS, P1, NC, G4 (PJ input shown)

[0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 11

FF3K - Sl1(0) - GZ, G3, P4, S1R, NC (K input shown)

l o o 1 o 1 1 o o o o o o 1 o o oI
, ,. ii i| J,

P LABEL WORDS

P4 - (1) - NC

1ooo ooo   ooooool
PZ - (0) - CH - AT Z0, NC

100001 olol o o o o o o o]
,, l ,

P3 - (1) - CH - AT 30, D1 = 40, C

100001101100,010001

Pl - (0) - CH - AT 10, D1 = 20, DZ = 10, C

i 'i0 0 0 0 0 1 0. 0 1 0 0I. 0 0 00,.

Figure 4.10 Label Word Examples.
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The D cards are used to create a delay table. This

table will vary according to the statistical model used. The case

of a uniform density function is treated here as an example.

The table consists of a label word and one or more

words of statistical parameters for each line in the table. The

label words are independent of the type of statistics used and

consist of the last eight bits of the matrix line label, corresponding

to an element type, or if desired in the case of storage elements,

an element type and input.

The remaining words in the delay table depend on the

nature of the statistics. After the label has been generated,

control is transferred to the program on the statistical subroutine

tape where the remaining words in the line are prepared. In the

case of the uniform density of delay, the remainder of the table

consists of a single word. The first eight bits are the minimum

delay (B) and the last eight bits are the width (W) of the density

function.

Figure 4.11 shows the delay table entries correspond-

ing to typical D cards.

I
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LAB_,LS ENT_mS

looooooooooololOol 100010_00000101001

D- NORZ-G -B20,W20

'1ooooooooooi o__103 Ioooo_ __oo_oooI _I

o- NAND_-G - _s, w_s

Iooooooooooooioi,1 looooio,ooooli ooll

D - FFRS - 2 - BI0, W25 (Set input)

Ioooooooooo I oooo 11 Iooo I 0 1110000111 oI

D - FFJK - 4 - B23, WI4 (PJ input)

Figure 4.1 1 Typical Delay Table Entries
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4.3 Program Initialization and Card Read Routine

The program initialization routine consists of clearing

the computer memory portion to be used for the interconnection

matrix and of the establishment of initial values for various

constants. It is shown in the form of a flow chart in Figure 4.12.

The interconnection matrix and certain auxilliary

registers are located immediately following the main program. A

number of words equal to one matrix line between the main program

and the start of the interconnectionmatrix is set aside for storing

initial values. These words form two registers INIT andICLK.

Register ICLK is used to indicate which input signals will undergo

transients while register INIT is used to store the initial values of

the P and S elements. To define these registers, use is made of

a base address MATX, a mnemonic given to the first address

following the main program. It proves convenient, for reasons

to be discussed later, to define the register INIT by the address

of the word actually located two words ahead of the actual register.

Also shown on the flow chart is a routine titled REST.

This routine is used to restore some initial conditions in event

that the card processing is interrupted by a format error. The

NOP and JMP ERR1 are DDP-II6 instructions for no operation and

I
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ST_T

'47 0G- HTB

'471 q- GOGO

'472 q- REI

RA+ '13562

RB4- 'IZ735

l
CCTR 4- -i

MINC 4- 3

INDEX 4- 1

INIT _- MATX

ICLK4- MATX + 1

SBIT 4- 0

GTNO ÷ 0

PNO 4- 0

SNO 4- 0

TiP1 4- MATE - TOP

(MATX + INDEX)_- 0

INDEX 4-INDEX + 1

TMPI _ TMP1 + 1

NO / TMP1 = 0?_
YES

REST

66

PRP14- NOP

FPRI_- JMP ERR 1

PRG1,- JMP ERR 1

PRD1 4- JMP ERR 1

PRCE_- JMP ERR 1

I

_To REAI_Figure 4.13)

NOTE: SEE APPENDIX E FOR FLOW CHART CONVENIX)NS/

Figure 4.12 Program Initialization Flow Chart
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transfer to routine ERRI respectively. The mnemonics referenced

here are latchwords in the card processor which open successively

different portions of the processor.

In the portion devoted to the clearance loop, mnemonic

TOP refers to the highest allowable memory location for the

purposes of forming the interconnectionmatrix. The statistical

and analytical option programs are all stored in memory above TOP.

The mnemonics HTB, REI, andGOGO are the addresses

of entry points in the main program which are utilized by the

statistical and analytical programs.

The other mnemonic referenced in the initialization

flow chart are listed and defined below.

GTNO

SNO

PNO

CCTR

MINC

RA

RB

is a counter of G cards

is a counter of S cards

is a counter of P cards

is a total card counter (T, G, P, S, D, and E)

is the number of computer words in a matrix
line

is an initial value of a random number (15

digits)

is an initial value of a random number

(remaining 15 digits)

!
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IND

SBIT

is an index register

is a variable exit word used with sub-

routine HTBI. Its use is discussed in

page 75.

The card reader routine flow chart is shown in Figure

4.13(a). When it is desired to read a card, the card reader is

interrogated twice in order to determine if the reader is on and

cards are in the hopper, and to determine if a card is registered.

If these conditions are not met the program remains in the

corresponding interrogation loop. If the conditions are met

the card reader buffer is interrogated. If the buffer is not full and

ready for transfer, the program waits again in an interrogation

loop; if the buffer is ready the contents are read and stored in the

program buffer (BUFF). As each card column is read the pro-

gram buffer location is indexed, so that eventually the entire 80

columns of the IBM card are transferred into BUFF. At this poir£

the index register is re-initialized and the program proceeds to

process the information on the card.

During the course of processing, the information from

BUFF is transferred to the accumulator at many points on the

program. In the interests of brevity (and clarity) the shorthand

notation shown in Figure 4.13(b) has been adopted for use in

!
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READ

N_O C.R. READY ? )_y.ES

C .R. OPERATIONAL .

I INDEX 4- -80

C.R. BUFFER FULL / r

_UFF +INDEX 4- C.R. BUFFER_

! INDEX.INDEX÷I |

I INDEX 4- -80

I To T Card Processor (Figure 4.14)

I
I
I
I

Figure 4.13(a) Card Read Routine

+
I SKIP N COLUMNS

I READ A COLUMN

_-< x? >--_

IMPLIES

IMPLIES
b

INDEX _- INDEX + N

ACC _- BUFF + INDEX

INDEX 4- INDEX + 1

DO CONTENTS OF

ACC = X ?

I
Figure 4.13(b) Shorthand Notation

I

I
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4.4 The T Card Processor

The first card read by the program is the T card.

The function of the T card processor is to horizontally dimension

the interconnectionmatrix. The flow chart for this processor is

shown in Figure 4.14.

As the card is scanned, it is checked for the following

types of format errors:

(a) First symbol is not a T

(b) The element type symbols (G, S, and P)

are not entered in the proper order. This

is done primarily to prevent situations wherein

one element type is entered twice and another not

at all.

(c) The se:luence of symbols following an element

type symbol and an e_lual sign is not a string of

numerals terminated by a space or comma. The

e=luality sign itself is not checked, the column after

an element type symbol is skipped.



I

I
71

I

I

i To initial sort (Fig. 4.16)_

ISKIP 1 COLUMN !
READ A COLUMN J--

J "! 0

ERRO

I
I

I
I
I

SKIP 1 COLUMN

CALL H_2 BI

PCTR 4- NUM

TMP3 4- NUM

READ A COLUMN

G?

ERRO

SKIP 1 COLUMN

I

S

CALL HT BI

GCTR 4- NUM

TMP34- TMP3 + G_TR
READ A COLUMN

_ES
_2< s? >

ERRO

I

I

HTBI (See Figure 4.16)

ERRO (See Figure 4.15)

FROM READ (Fig.i 4.13)

READ A COLUMN J

ICCTR¢- CCTR + 1

+
YES< T ?

S

ERRO

SKIP 1 COLUMN

CALL HT BI

SCTR 4- NUM

ACC4- 2 x NUM

ACC¢- ACC + TMP3

JACC *- ACC - 16

NO
._ACC > 0 ?

JMINC_-MINC + 1

<MINe<4._ >_Oj
I MINC ÷ 5 "

MATI4- MATX + MINCJ

IMATL_ MATI

READ (Fig. 4.13)

I
Figure 4.14 T Card Processor Flow Chart
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(d) An unallowed symbol appears for an element

symbol.

In the event that one of the above format errors occurs,

the machine transfers to subroutine ERRO (flow chart, figure 4.15)

which causes the typewriter to print out the number of the card and

the column being scanned when the error occurs. After the format

error is corrected, all cards must be reinsertedin the hopper and

the start button pushed.

The number of each of the element types is converted

from card reader output code to binary and stored for future

reference. The total number of possible circuit inputs (P + G + 2S)

is computed in TMPI, and converted into an equivalent number of

matrix lines. Each time the subtraction of a word length (16)

yields a positive result, the contents of MING are incremented by i.

A negative or zero result from any of the repeated subtraction

terminates the process. The length of possible P card pseudo

matrix lines dictates that a minimum value of MINC be five. If

MINC is less than five, a five is entered into MINC, otherwise the

computed value is accepted.

The initial status registers INIT and ICLK are
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I FROM MAIN _ROGRAM FROM CALLING PROGRAM

I
I

I

I
I

I
I

!
i
I

I

I

TYPE "CA"

ACC4- CCTR + 1

CALL BTDI

TYPE "--COL"

ACC _ 80 + INDEX

CALL BTDI

HALT

REST (Figure 4.12)

(a) ERRO

ENTRY FROM

CALLING PROGRAM

!

TMP1 4- 0
TMP24- 0

TMP34- 0

READASR - 33

,t

I

YES NO
G2

M6_- 10000 [INDEX _- -6

TEMP4- ACC --M6 __

I-ACC_- '260 + TEMP

TYPE ACC

INDEX4- INDEX + 1

YES _ NO

__x -o._>__]
To Calling Program_

IM6_- M6-- i0ACC4- TEMP I
I

(b) BTDI

•7 TMP1 _- TMP1 + 1

TO CALLING PROGRAM

NO YES
CR?

Address in OUT

TYPE "/" ]

CARRiAgERETURNJ'

i

!
Figure 4.15

(c) STRT

Miscellaneous Subroutine s

!

i
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allotted the equivalent of one matrix line immediately preceding

the matrix. For this reason the address of the last program

entry (MATX) is augmented by MINC and used to define the

address of the first word in the matrix (MATI) and also the initial

entry into the matrix line index (MATL).

A subroutine called very often in the T card processor

and elsewhere in the matrix maker is subroutine HTBI, a

'Hollerith to Binary" converter. The flow chart for subroutine

HTBI is shown in Figure 4.16. Upon entry into HTBI, the next

column on the card being processed is read and checked to see if

it is a numeral (input from card reader less than 12 octal). If it

is a numeral it is entered in binary into TMPI. The next column

is read. If it, too, is a numeral, it is added to previous contents

of TMPI multiplied by I0 and stored in TMPI. The operation is

continued until a non-numeral is detected.

If a non-numeral is detected, the variable exit word

SBIT is interrogated. If SBIT is zero the only permissable

symbols are comma or blank, either one of which results in an

exit from HTBI with the binarized word in the accumulator. A

non-permitted symbol results in a transfer to ERRO. If SBIT is

not zero, only an R or S followed by a comma is permitted. If an

I
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CALLING PROGRAM

I TMP1 _- 0

READ A COLUMNTMP2 *- ACC

ACC4- 4 x TMP1

ACC÷ TMP1 + ACC

ACC + g x ACC

TMP1 #- ACC+TMP2

t

NO

ERRO

I TMPI_- 2 x TMP1

-----_ TMPlq- 2 x TMP1 -, 1]

I READ A COLUMN

I

ERRO

75

_< + > NoS BIT = 1 ?

I

+

._TMP2 = ",

E R_O

"?

ACC 4- TMP 1 _,_-__

TO CALLING PROGRAM

(See Figure 4.15)

Figure 4.16 Subroutine HTBI, Hollerith to Binary Conversion

I
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S occurs the binarized number is doubled before an exit. If an R

occurs the binarized number is doubled and one is subtracted

from it before exiting. The reason for the variable exit will be

made clear in the discussion of the G card processor. For the

case of the T card processor SBIT is always zero and any string

of digits in successive card columns terminated by a blank or

comma will be binarized and placed in the accumulator by HTBI.

In addition to the mnemonics previously discussed

other mnemonics appearing in the T card processor and in HTBI

are listed and defined below:

SCTR

PCTR

GCTR

NUM

number of S elements expected

number of P elements expected

number of G elements expected

output of HTBI

When the T card processing is complete, the next

card in the card reader is read.

4.5 The Initial Sort and P Card Processor

After the T card has been processed, all subsequent

cards are subjected to an initial sort. This initial sort, with the
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flow chart of Figure 4.17, has the function of determining which

processing routine shall handle the card.

The first column of the card is read and interrogated

to see if the symbolF, P, D, or E occurs. If none of these

symbols occurs control is transferred to the O card processor

where a further sort is made.

If the first card column contains an F, the card

represents a storage element. The storage card processor con-

tains a latchword FPR1. This word will normally contain an

instruction causing a transfer to subroutine ERR1 which causes the

typewriter to print "ERI" and halt operation. However, if, and

only if, all P and G cards have been processed, a NOP instruction

is inserted into FPR1 which permits further processing of

storage cards. If this later case holds, card column three is

interrogated for a J or a K. If J occurs the JK element processor

is called, If R occurs the RS element processor is called'; If

neither R nor J occurs subroutine ERR0 is called.

The detection of a P results in transfer to the P card

processor. If a D or E is detected control passes to the D.or E

card processor respectively.

I
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ERR1

PRCR

ERR0

PRG1 4- NOP

MATP 4- MATL+MINC

_--_NUM PNO ? > YES= F

ERR0 READ A COLUMN

i
(TMP4) 4- 1TEMP _- PNO

/Ace 4- INIT

CALL SAS9

N

< 1._ >--1

< o?

PPRO II ERR 1

(Figure 4.18) ERR0

HTBI

SAS9

ERR0

(See Figure 4.24)

(See Figure 4.15)

(See Figure 4.16)

(See Figure 4.19)

Figure 4.17 Initial Sort and P Card Processor (Part I).
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Assuming that the initial sort revealed a P in column I,

the control is transferred to the P card processor. It will be

recalled that the information on the P card is transformed into a

pseudo matrix line, consisting of a label, a clockword, and up to

three words which store signal shape parameters. The flow charts

of the P card processor are shown in Figures 4.17 and 4.18. The

P card formats were shown in Figure 4.3.

Following the detection of a P in the first card

column during the initial sort, the latchword PRPI is inspected.

As the program loaded, a NOP was stored there, and the NOP

remains until a number of P cards equal to the number stated on

the T card have been processed. At that point a jump to ERR1 is

inserted into PRPI. Thus if more P cards than predicted are fed

into the machine an error type out will occur.

Presuming that PRPI contains a NOP, the second card

column and any succeeding columns containing numerals are read

and binarized. This binary number is compared with the contents

of the P card counter (PNO). Since PNO is incremented by 1 each

time a P card is processed, this test indicates whether the cards

are in sequence. A card out of sequence results in a transfer to

ERRO. The contents of PNO are then compared with the contents

I
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FROM Fig_ 4.17

SKIP 2 COLUMNS

READ A COLUMN

N?

'(TMP4)I *- 1

SKIP 1 COLUMN

]

YES

___ ERRO

SKIP 2 COLUMNS

TMP44- TMP4 + 4

TEMP4- TEMP + 1

CALL HT BI

(TEMP)4- NUM

READ A COLUMN

%. YES
G? /

ERRO

ESYM

HT BI

SAS 9

(See Figure 4.19)

(See Figure 4.16)

(See Figure 4.19)

_R_*OACOLUMN
T? D

&-<_ND_.X--07 >----
ERRO

-ID SKIP 1 COLUMN

TEMP 4- MAT L + 1

CALL HT BI

(TEMP)_- NUM

TEMP4- TEMP + 1

(TEMP) + NUM

READ A COLUMN

No
'-_ N ?

I(TMP_)_5*_

1
TEMP4- PNO

ACC4- ICLK - 2

CALL SAS9

i
TMP42 6 _" PNO 1(MATL. } _ TMP4 .

t
ESYM

ERRO (See Figure 4.15)

Figure 4.18 P Card Processor (Part II)
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of PCTR. If these numbers are identical, the P card under

process is the last 1° card expected. The 10 processor is then

latched by setting a JlV_ ERR1 into PRP1 and the G card processor

is unlatched by inserting a NOP into PRG1 the gate processor latch-

word. The matrix line index (MATL) is augmented by MINC and

stored in MATP where it represents the line index for the last P

card.

As long as 10N0 is less than or equal to PCTR

processing continues. The next entry on the card contains the

initial level of the signal, enclosed by parentheses. The column

containing the left parentheses is skipped and the status column is

read. It must contain a 1 or a 0 or a transfer to ERRO is made.

If a )is present as an initial status, a 1 is entered into a

specific bit of the register INIT. The format of the bits in INIT is

the same as that of a matrix interconnection word. Thus, if PX

is initially a 1 , a 1 is entered into the X thbit of INIT. If the

status bit on the 10 card is 0 no entry is made into INIT, and the

X th bit remains a 0.

Entry into INIT is made by subroutine SAS9, shown in

Figure 4.19. SAS9 makes use of two pieces of information. The

contents of the accumulator are treated as a reference address,

I
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DENT

_EAD A COLUMN

YES

YES

>
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SBIT 4- 1

CALL HT BI

ACC4- NUM + PCTR

TEMP@ ACC + GCTR

1

CALL HT BI !TEMP_- NUM + PCTR,

,

CALL HTBI
TEMP • NUM

TEMP4- TEMP - 16 ]

;MATR_ MATR + 1

1

I o
ENTRY ESYM EXIT SAS3

I IREADA COLUMN

g$ -?
| _o

BLANK?

I

SAS9 EXIT

_'INCT + INCT + 1 ]

MATF_ MATL 1MATL_ MATL + MINC

READ (Figure 4.13)

I ERRO ESYM
Figure 4.19 SAS9, SAS3, and ESYM
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and the contents location TEMP indicate the number of bits to the

right of the most significant bit of the address in TEMP into which

a 1 is to be entered. For example, if the accumulator contained

the address of INIT and the contents of TEMP were 5, a 1 would

be inserted in bit 5 of the address stored inINIT. If TEMP had

contained a 27, a 1 would be placed in the ii th bit of the word

following the address stored in INIT. It proves convenient in

later application of SAS9 to have 2 added to the accumulator con-

tents, so that the address used to specify INIT is actually that of

the word two places ahead of the actual location of INIT Thus the

definition of INIT specified in the initialization actually makes

INIT composed of all the skipped matrix line except the first two

words.

After the initial status is processed, two card

columns are skipped, then an interrogation for an N or C is made.

If the column in question contains neither symbol, a transfer to

ERRO is made. The detection of an N is interpreted as specifying

a fixed level and a 1 is inserted in label but 10 and the contents of

PNO are inserted into lebelbits 2 through 6, and processing is

completed by calling subroutine ESYM. ESYM, shown in Figure

4.19, is an end symbol processor. The next card column is

!
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checked for a blank, or a period. If neither occurs ERRO takes

control, if either occurs MATL is incremented by MINC and control

is transferred to READ.

After the status has been processed, if a C is sensed

rather than an N, subsequent columns are scanned until a T is

sensed, or the 80 columns of the card are exhausted. The later

case results in a transfer toERRO, the former results in the

numerals in the card columns following the T being binarized and

inserted into both the clock word and the first storage word. The

binarization is governed by HTBI and terminates when a blank or

comma is sensed.

At this point,

either an N or a D

Should an N occur,

the next column is interrogated for

If neither occurs, a transfer to ERRO is made.

the card represents a level change and a 1 is

inserted into label bit 15. A 1 is also inserted into register ICLK.

Register ICLK, it will be recalled, is located between the end of the

program and the beginning of the matrix. Its use is to indicate

which of the external inputs have a future transient on them, as

opposed to fixed levels. ICLK is located immediately ahead of INIT

and can occupy at most two words, restricting the operation to a

maximum of 32 external inputs. This limit on the size of ICLK
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could be removed by allowing two matrix lines between the end

of the program and the start of the matrix; it was not considered

necessary, however, at this time.

SAS9 is used to loadICLK. The contents of PNO are

placed in TEMP and the address stored in ICLK (decremented by

2) is placed in the accumulator. After ICLK is loaded, the con-

tents of PNO are placed in label bits 2 through 6, and an exit to

ESYM is made.

If, following the loading of the clock word and the first

storage word, the next column had revealed a D rather than an N,

the two succeeding columns are skipped and the numerals contained

in subsequent columns are binarized by HTBI. The results of the

binarization are placed in storage word two and a 1 is added to the

label word in bit position 14. If at this point the next column

yields a D, the process described in the paragraph is repeated

except that the binarized information is placed in storage word

three. Note that the double addition of the 1 in bit 14 results in a

1 in bit position 13.

The two cases discussed immediately above correspond

to a single pulse (single D on the card) and a periodic pulse (two



I

!
!

I

I
I

I

I
!
I

I
I

I
t

I
i

I

I

86

D's on the card). Each of the two cases is terminated by the

symbol C, which causes an entry to be made in ICLK, and the

contents of PNO into label bits 2 through 6, after which an exit to

ESYM is made. If the last entry on the card is not a C, an exit

to ERRO is made.

4.6 The G Card Processor

The flow chart for the G card processor is shown in

Figure 4.20. After the initial sort, if the first card column does

not contain anF, IP, D, or E entry is made to the G card processor.

Here the first column is inspected for an N, A, or an O. If none of

these symbols occurs an exit is made to ERRO.

If an N is detected, a 1 is inserted into label bits 7 and

14. Bit 14 is the bit which specifies whether or not an inversion is

contained in the gate. And since the initial output of the gate is

assumed to be zero, the "ON" bit which specifies the status of the

combinatorial portion of the gate is always a 1 if the N bit is a 1.

Since the first column symbol N is used as a prefix, after the

detection of an N, the second column is interrogated for anA or an

O. If an A is detected in the first column or the NA combination in

first and second columns a 1 is entered into label list 15.

!
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I
FROM INITIAL SORT

figure 4.17
Yi

N? ---_ CALL HT BI I

YES, _ MO

_-_ NUM =GTNO?/_--_

Y_s _, _._o

YE _ 0

-_ SCTR = 0? __

IPRD14- NOP ---.-J I
I

I PRG14- JMPERR1 I

IFPR1--NOP I
IMAT_.-MATL I
I MATP4 - MATL I

#____--
p
[SKIP 1 COLUMN I

r_ c.L_ s.J I

ESYM
SAS3 (See Figure 4.19)

HTBI (See Figure 4.16)

ERRO (See Figure 4.15)

ERR1 (See Figure 4. Z4)

ESYM(See Figure 4.19)

I Figure 4.20 G Card Processor
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After the inversion and combinatorial information has

been entered in the label the gate number (GTNO) is incremented

by I. At this time, the gate processor latch word (PRGI) is

interrogated. This word is normally an exit to ERR1. However,

as was previously seen, a NOP is inserted into PRO1 upon comple-

tion of the P card processing.

At this point, a NOP is inserted into control word NCX2

with an effect to be described in the discussion of input list

processing. Card columns are read until a numeral is detected.

This numeral represents the number of inputs into the gate: it is

negated and inserted into the input counter (INCT) as well as

inserted into label bits 10 through 13. The present method of pro-

cessing restricts the number of inputs to nine or less. A trivial

modification involving a call to HTBI could easily eliminate this

restriction.

Card columns are scanned until the symbol G is

detected or the 80 columns are exhausted. The later case results

in a transfer to ERRO, the former case results in the binarization

of the numerals following the G symbol by subroutine HTBI. This

binarized number is checked against GTNO to see if the cards are

in sequence and compared with GCTR to see if it is the last O card.
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If the card is out of sequenceERRO is called. If the card is the

last G card, the gate processor is latched by inserting a JMPto

ERR1 into PRGI and the S card processor is unlatched by inserting

a NOP into latch word FPRI. If there are no S cards to be

processed, the latch word to the D and E card processors are also

set to NOP at this time. The label word is completed by inserting

the value of GTNO into bits 2 through 6.

The input list on the card is processed by calling

subroutine SAS3 for each entry. The flow chart for SAS3, which

contains SAS9 is shown in Figure 4.19. Upon entry into SAS3, the

card column is scanned to determine the nature of the input. If a

P is encountered the subsequent numerals are binarized and

loaded into TEMP. MATL is loaded into the accumulator and

SAS9 is called. This results in the entry of a 1 into a location a

number of bits equal to the digits following the P, away from the

beginning of the interconnection words. For example, if the input

list entry is P4, a 1 is entered into the fourth bit of the first

inter conne ction wo r d.

If the input symbol is a G, the binarized digits following

the G are augmented by the value of PCTR (the number of P inputs)

and entered into TEMP prior to the jump to SAS9. This is done to

I
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move the entry past those positions in the matrix allotted to P

entries. As an example, if there are seven P inputs and the input

list entry is G13, then a 1 is entered into the fourth bit of the

second matrix interconnection word, which is 20 bits (13 + 7) into

the matrix line.

If the input list entry is an S, it is important to deter-

mine whether the input comes from the set or reset side. In this

case, the variable exit word SBIT for subroutine HTBI is set to 1.

From the flow chart for HTBI, (Figure 4.16), it is seen that the

digits following the S are binarized and doubled. If terminated in

an R a 1 is subtracted from the result, if terminated in an S the

binarized number remains unchanged. It is this result which, after

the addition of PCTR and GCTR, is entered into TEMP, prior to the

jump to SASg. In this case if PCTR = 7 andGCTR = 21, and an

entryS8R, is processed, a 1 is inserted 43 bits (7 + 21 + 16-1)

into the matrix line (or into the eleventh bit of the third inter-

connection word.). If the entry had been $8S, the entry would

have been a 1 into the 44 th list of the matrix line.

It is important to note that prior to the jump back from

HTBI, SBIT is reset to zero. There is no possibility of using the

R and S suffix exit unless the main program sets SBIT to 1 prior to

I
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the jump to HTBI.

If an NC entry in the input list is detected, the NOP

previously placed in NCX2 insures that SAS9 is bypassed and no

entry is made in the interconnection matrix. The B symbol exit

shown in SASB is used in conjunction with the D card processor

and is discussed in that section.

Regardless of the nature of the input, the input counter

is incremented by 1 before the exit from SAS3.

processed,

zero,

made.

After each entry on the input list of the G card is

the input counter (INCT) is checked. When it reaches

processing is presumed complete and an exit to ESYM is

Note that if the number of entries in the input list does not

agree with the number stated in the gate type an error will be

detected. If there are more entries, ESYM will detect an illegal

symbol. If there are fewer, the illegal symbol (blank) will be

dete cte d by SAS 3.

4.7 The S Card Processor

In the discussion of the initial sort it was noted that the

detection of an F in the first card column was followed by a test of

I



I
i

I
I

I

I
I

I
I

I
i

I
I
I
I

I

I
I

92

latch wordFPR1. This word normally causes a jump to ERR1,

and is only replaced by a NOP after all the G cards have been

processed. Presuming that the G cards are all processed, the

third column of the card is sensed. If it is a if, the S card

processor is entered at PRCJ; if it is anR, entry is made at PRCR.

The flow chart for the S card processor is shown in

Figure 4.21. The separate entry points are used to establish

separate initial conditions. In the case of an RS flip-flop only

three inputs are available; hence, the input counter (INCT) is

set to -3. A 1 is entered into label bit 15 to signify that it is an

RS element, and a column is skipped in order to get by the S in

column four of the card (for reasons to be soon clarified). In

the case of a JK flip-flop INCT is set to -5, and the label is

initially cleared.

After these operations, processing is common for

both types of flip-flops. The S card counter SNO is incremented

and a JMP SKIP is set into variable exit word NCX2. After this,

successive card columns are scanned until anS is sensed, or if no

S is sensed, until all 80 card columns are exhausted. This S

will normally be the first symbol in the S number. Note the

difficulty which would have existed had not the S in column 4 of the
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PRCR (Fig. 4.17)

!SKIP 1 COLUMN

INCT _- -3

TMP4, 5 _- 1

ISNO • SNO + 1NCXZ ÷ JMP SKIP

¢
I READ A COLUMN

Y__' S?

[--_ CALL HTBI

>

= SNO ?

r

NO

NUM

ERRO V
FPRI 4- JMP ERR1

PRCE 4- NOP

PRDI 4- NOP

i
>YES

+
TMP4^ + 1
TEMP_ 4- 0

TEMP4- TEMP+2xSNO

ACC4- PCTR + GGTR

TEMP4- ACC + TEMP

r

ACC 4- INIT

CALL SAS9

SKIP Z COLUMNS

TMP3 4- 1

ACC. 115,SNO.
ACCJ_ _CC +Jl

TMP4 4-'TMP4 @ACC

PRcJ (Fig. 4.17)

J TMP4e- 0INCT 4- -5

_INDEX = 0?

k SNO = SCTR?

#<
._' SKIP 1 COLUMN

I READ A COLUMN

tl TEMP 4- -1 ]

]ERR0

ERRO

TMP3. , 4- TMP3

(MATI_)_- TMP4 @ TMP3 iCALL SAS3

INCT = 0 ?

t
ESYM] MATL+ MATL + MINC _-

Figure 4.21 S Card Processor
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RS cards been skipped. After the S has been sensed,

columns containing numerals are binarized by HTBI.

the S number, is compared with SNO to check sequencing.

out of sequence results in a call to ERRO.

subs equent

The result,

A card

If the card is in sequence, the S number is compared

to the expected number of S elements (SCTR). If they are equal,

the S card processor is latched by inserting a 5MP ERRI into

FPR1, and the D andE card processors are unlatched by inserting

NOP's into PRCD and PRCE respectively. If the S number is less

than the value in SCTR no changes are made in the latching

arrangements.

The next part consists of processing the initial status.

A column, containing a "(" , is skipped and the next column is

sensed. The sensing of a 1 causes label bit 8 to be made a 1, and

the initial status is entered into INIT. Entry is made in the

manner discussed in the P card processor. It is well to note here,

that the S cards have two possible outputs one of which will always

be 1 so that the question here is not should a 1 be entered into the

proper bit in INIT, but rather into which bit should the 1 be

entered. If the initial status is a 1, the entry is made a number

bit equal to PCTR + GCTR + 2 x SNO into INIT. If the initial status
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the entry is made one bit to the right.

After the initial status processing is complete two

columns are skipped, a "),' and a blank, before the input list is

encountered. The input list is processed by SAS3 as it was

described in the discussion of the G card with the following

modifications:

(a) As each entry in the input list is processed,

the matrix line index (MATL) is incremented by

MINC. This causes a new line to be created for

each input.

(b) Since no matrix line is desired for an uncon-

nected input, the JMP SKIP inserted into exit-

word NCX2 causes the MATL to be decremented

by MINC before exiting from SAS3.

Each line requires a label which specifies the input

composing the matrix line. This is accomplished by inserting a

single 1 into bit 15 of dummy word TMP4. Before each entry

into SAS3 this word is shifted left once and inserted into the label.

It is worth noting, that in the case of an NC input, the previously

written label word is erased so that no confusion results.
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Processing is complete when the input counter has been

incremented to zero. An exit to ESYM is made. Errors are

detected if there are not exactly 3 entri_es in the input list for an

RS element, or 5 entries for a JK element.

4.8 The D Card Processor

After the P, G, and S cards have all been read and

formed into the matrix, the D cards are read and the information

from them used to form a delay table. Each line in the delay table

consists of a label word and one or more words of statistical data.

As was mentioned earlier, the delay table label word

consists of the last 8 bits of the label word of a matrix line refer-

ring to the same type of element or element input. The label word

processing is a part of the main program. The statistical data

words will vary in format according to the nature of the statistics

and for this reason are processed by subroutines. (See Delay

Insertion in next chapter.)

The D card flow chart is shown in Figure 4.22. The

subroutine shown there is for a uniform density of delays and is

included only as an example. Following the detection of a D in the

first column of the card the latchword PRD1 is examined. Only if
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(MATL)4- TMP2 @ TMPI

SKIP I COLUMN I
I'CALL DDLY _--DENT

÷
READ (Fig. 4.13)

DENT

HT BI

ERRO

(See Figure 4.19)

(See Figure 4.16)

(See Figure 4.15)

ERRO

DDLY

SKIP i COLUMN

MATL _- MATL + i

CALL HT BI

(MATL). n4- NUM.
SKIP Z _-(_LUMNS j

CALL HTBI

(MAT L) q- NUM

MATL4- MATL + 1

_EXIT

Figure 4.22 D Card Processor
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all expected P, G, andS cards are completely processed and no

E card has appeared will this word contain a NOP. Presuming

that this is the case, the third column of the card is interrogated

to see if it contains an F.

Since the label word in the delay table resembles the

label word in the matrix, it was hoped that common routines could

be used. This proved to be the case for G element delays, but it

could not be done conveniently for the storage cards.

If column three contained an F, column five is

examined to determine whether it is RS, or JK. If it is an RS

element a lis placed in label bit 15. In either case a 1 is placed

in label bit 16. To obtain the input bit a 1 is placed in bit 14 of

dummy word TMP2. After the numeral on the delay card which

specifies the input is read, the contents of TMP2 are shifted left

a number of times equal to one less than the numeral. The shifted

word is then combined into the label.

If the third column of the D card did not contain an F,

the value -1 is inserted into GTNO and an exit to the G card

processor is made. The value of -1, ensures that the G card

latch word will be bypassed and that the GTNO (zero after being
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incremented) agrees with the blank following the symbol G on the

D card. The card is processed as if it were a G card until the

call to,SAS3 to process the input list.

D card where it would expect a P, G, S,

SAS3 detects a B on the

or N on the G card. This

results in an exit to the D card processor at DENT.

At this point subroutine DDLY is called. This sub-

routine, contained on a separate tape, creates the statistical

data words of the delay table. In the example of uniform density,

the card contains the information B = XXX, W = YYY where XXX

is the shortest value of delay, and YYY is the width. Upon enter-

ing DDLY, the address stored in MATL is incremented by one,

and in this address a composite word is stored. The 8 most

significant digits are XXX in binary, the other 8 digits are YYY in

binary. Subroutine HTBI is used for the binarization in both

cases. After the word is created and stored, MATL is again

incremented by 1 and the next card read.

The D card processing continues as long as D cards

are read, and is terminated by the sensing of an E card. The

ordering of the D cards is not significant, although time wLll

be saved if the cards of the most common circuits are inserted

first so that they will be near the top of the table.
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4.9 E Card Processor

If an E is detected in the first column of the card,

latchword PRCE is interrogated. This is normally an instruction

to JMP to ERR1, however, if all the P, G, and S cards have been

processed in a satisfactory manner, it contains an NOP. Pre-

suming an NOP is in PRCE, the first actions are to latch both the

D and E processors by inserting a JMP to ERR1 in each of their

latchwords.

The flow chart for the E card processor is contained

in Figure 4.23. The function of E card processor is to dimension

and initialize certain registers to be used in the simulation, and

to compute the initial status of the gate elements.

The length and starting address of the initial status

register INIT are already known. It is desired to use this inform-

ation to construct a register equal in length to store the current

status of the system. This register is located immediately

succeeding the delay table and is-given the mnemonic CURR.

Subroutine INS (Figure 4.24) is used for this purpose. The

current reading of MATL is defined as CURR, and a jumpto

INS is made. In INS, the index word CURW is set to CURR, and

the index word INI is set to INIT + 2. The contents of the address

I
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PRCE (Fig. 4.17)

_PRCE =_ NOP? >

ERR1

"_MATL _- ACC

CTR_- CTR + i

YES

Y_(MATL)9 = 1[CALL CRSE _
/

-----<ACC > MATG?

MP1 = 0?

CURW 4- CURR

ACC4- INIT + 2

>YES

r,N,.AceV(INI)+ (CURW)
CURW4- CURW + I
ACC e INI + i

ANALYSIS

SUBROUTINE

SCAT

INS

CRSE

ERR1

(See Fig. 4.28)

(See Fig. 4.24)

(See Fig. 4.24)

(See Fig. 4.24)

Figure 4.23
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"_ PRP1 . NOP

PRD1 _- JMP ERR1

PRCE4- JMP ERR1

CURR 4- MATL

CALL INS

CURF 4- CURW

ACC 4- CURW + MINC

CLKI_- ACC - 2

CLK_- CLKI - 1

ACC_- MATF - MATI

ACC4- ACC ,'--MINC

ICLKF4- CLK

---_TMP1 _- 0 !
ACC 4- MATP I

I

N_AAMATL_- ACC

CALL SCAT

oCC_" MATL_ + MINC
YES

CC > MATG? \

CALL INS _" _ICTR _- PCTR

ACC 4- MATP

E Card Processor
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(CLK) _- 0

CLK.,_- CLK + 1

s +
L-L_CLK < CLKF ?

ITIME e 0

CLKWq- 0

(CLKI)4- (IC LK)

N_O(CALL SCAC

CALL SCNT

C LK _- C LKI

CLK) =_ O?

ICLK+ CLK + 1

address stored in
location '777

I
YES

ERSE

MPI4- TMPI + 1

CC _ CLKI

ALL CRSE

EXIT

SCAC (See Figure 4.25)

SCNT (See Figure 4.28)

Figure 4.Z4

iNs$

I c_w" c_R_ 1ACC 4- INIT +Z

_ INI_- ACC

(CURW) 4- (INI)

CURW_- CURW + 1

ACC_- INI + 1

IYES. * .NO

_---"i,, ACC < MATI?

EXIT

ERR 1

i TYP_"El'" C_-LF I_ALT
REST (_'ig. 4. lZ)

CRSE

CLK_- ACC

ACC _- CTR

I ACC,- ACC - 16 14-

.ACC > 0 ?

ICLK+ CLK + i

-_ (CLK)cTR - 1 e- 1

EXiT

Simulator Control Flow Chart and
Miscellaneous Subroutines
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stored in INI are transferred into the contents of the address

stored in CURW. BothINI and CURW are incremented and the

process repeated until the incremented value of INI is equal to

MATI The last value of CURW which accepted information from

INI is designated CURF.

A second register TRNI is used to store the locations

of circuits which are in the transient state. This register is

equal in size to the number of interconnection words. It is

dimensioned by adding MINC - 2 to the value of CURF This

final word in TRNI is designated CLKI, since it also serves as a

marker to indicate the start of the register CLKI.

CLKI is a register which designates which matrix lines

contain elements or inputs (In the case of storage elements) which

are about to undergo transitions. This register must be dimen-

sioned separately since the number of matrix lines is not a simple

function of the number of various types of elements. Its length

is obtained by subtracting MATI from MATF, and dividing the

result by MINC, yielding the number of matrix lines. This number

is then divided up into 16 bit words. The address of that last word

used is designated as CLKF. The dimensioning of registers is now

complete.
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The gates' initial status are then determined. An exit

word TMPl is set to zero, andMATP, (the address of the label

wordof the first gate word) is inserted into MATL Each of the G

card matrix lines is scanned in turn by subroutine SCAT shown in

Figure 4.28. This subroutine examines the label word on each

line and causes a transfer to the proper subroutines. In the case

of the gates, if the label indicates a NAND or an AND a transfer

to subroutine AND is made. In case the label bits indicate an OR

or NOR, a transfer to OR is made. These subroutines are dis-

cussed in detail in a subsequent section of this chapter. At this

time it is sufficient to note that the current status of the inputs are

examined, i.e., CURR is compared with the interconnection

words in the matrix line. Any changes in the status of the gates

required by the inputs in CURR are made. Recall that INIT was

previously transferred into CURR and the initial status of the P

and S elements can thus influence the gates. Any time a change in

gate status is made TMPI is incremented by one.

When all the gate lines have been checked,

status is entered into CURR.

label words of all the gates.

routine CRSE is called.

the changed

This entry is made by scanning the

Any time the status bit is a 1, sub-

This subroutine generates a variable shift
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instruction in the same manner as does SAS9. When the new

status of the gates has been entered into CURR the process of

scanning the gate lines is repeated. This process continues until

a stable situation occurs, that is, no new changes in gate element

status are required. This condition is detected by examination of

TMP1. This word is set to zero prior to each pass and is incre-

mented only when a change in status occurs. It is examined again

after each pass; when it remains zero initialization is complete.

In situations where there is no feedback, the number of

passes required to initialize is equal to the number of levels of

logic in the path containing the greatest sequence of gate elements.

When initialization of CURR is complete, the contents

of CURR are also substituted into INIT so that at this time INIT

contains the initial status of all elements. At this point the E card

processing is complete, and the system is ready for simulation.

4.10

determine d,

for simulation.

transient basis.

The Simulation Technique

Once the matrix has been formed, the initial status

and the delays have been inserted, the system is ready

As was noted earlier the simulation is done on a

This "transient" operation requires a two phased
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operation. One phase, a routine with a mnemonic SCA_ consists

of the decrementing of the clock words in any matrix line which

has a predictable transient in the future. This predictable tran-

sient could be a circuit undergoing a propagation delay or an input

signal with a transient still to come. After the clock word has

been de=remented, it is inspected to see if the delay has gone to

zero. If so, the output of that element now undergoes a transient

and the system status is modified accordingly.

The second phase, with mnemonic SCNT, consists of

an analysis of the transients detected bySCAC. If any of these

transients cause a change in the inputs of any element_ the output

is modified accordingly, which may involve the initiation of a

propagation delay. If such is the case, an addition is made to list

of matrix lines which must be processed by SCAC.

The control of the two phases is shown diagramatically

in Figure 4.24. The starting point of the simulation is given the

mnemonic GO. Prior to the entry to GO it is assumed that the

initial status of the elements has been transferred into CURR.

This is done by the E card processor the first time around, and by

the reinitializer (Figure 4.35) for all subsequent simulations.
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At GO, register CLK is set to its initial value. This

register is of variable length. It contains a number of computer

words sufficient to allot one bit to each matrix line. The bits

from left to right represent the matrix lines in sequence; thus, the

first block of bits represents P lines, the next block G lines,

and finally the remaining bits represent S lines. CLK has as a

function the maintenance of a running list of those matrix lines

with active clock words. This includes all signals which still are

capable of producing transients and all elements undergoing propa-

gation delays. As an example, if P3 represents a single pulse,

there is a 1 in bit 3 of CLK up until the trailing edge of the pulse

Occurs.

Since the system is assumed initially quiescent, CLK

is initialized by loading in the contents of ICLK. This register

ICLK, (It will be recalled from the P card processor) con-

tained a list of all input signals except fixed levels and hence is

equivalent to the initial status of CLK.

After CLK has been initialized, the elapsed time

counter TIME is set to zero along with a clock increment word

CLKW. There then follows a transfer to SCAC, followed by a

transfer to SCNT. This alternation continues until halted by
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(a) the desired measurement is made, or

(b) no further transients are expected as evidenced

by an all zero content of CLK.

In the first case, the system is reinitialized and, if

needed, more simulations are initiated with new delays. The

second case results in a transfer to whatever address is stored

in location '777. This provides an option for the user to incor-

porate in his analysis program.

4.11 The Clock Scan Routine (SCAC)

The flow chart for SCAC, shown in Figures 4.25, 4.26,

and 4.27, indicates that the first operation is an inspection of CLK

to determine which bits contain l's, thus determining those

matrix lines containing active clock words. In the regard, word

CTR is used to store one less than the binary equivalent of the bit

position of the 1 in CLK.

The first bit position in each word of CLK is treated

separately because that bit corresponds to a sign bit in the DDP-116

word and is not subject to the normalize instruction. The remain-
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CLKI

TIME _- TIME + CLKW

CLK + 1

+
---_ CLK< CLKF ?

>
I _;._° o

L-_CALL OUTC

/

V

I "-J NORMALIZE ACC ]

I _<_ACC = 0? > YES

I
l
I

l

'TMP6 4- ACC

CTR + CTR + SHCTR

CALL OUTC

ACC 4- TMP6

ACC + 0
2

I

WCTR _ WCTR + 16

CTR 4- WCTR

] ACC 4- (CLK)

I I

TRN _- CURF

CURW 4- CURR i

(CURW)+ ,(CURW)@(TRN)_-]

CURW 4- CURW + 1 , j

-_ CURW > CURF?

i. CLKW 4- CLKM

EXIT

. OUTC (See Figure 4.26)

I

I
Figure 4.25 Subroutine SCAC
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OUTC

ACC 4- MINC x CTR ]

MATL_- ACC + MATI

MATCh- MAT L + 1

(MATC)_- (MARC) - CLKW

___; _ o_>_s
+

_MATC_16<CLKM_>_

| [cLKM._MATClg_16

i EXIT

II0

II
I

I

CALL ERSE

TEMP_- PCTR + TMP8

OUTX (Fig. 4.27)

|

!

ERSE (See Fig. 4.24)

SAS9 (See Fig. 4.19)

ANALYZER REFERS

TO THE STATISTICAL

ANALYSIS ROUTINE

ENTERED SEPARATELY.

!

TMP811-16_'(MAT L)2 -6

CTR_ CTR + 1

NO

((MATL)9_I6= 1?_ES

(MATL)9 = 1 ?
POUT

(Fig. 4.27)

ACC_- GCTR + PCTR

TMP54- ACC + 2xTMP8

TEMP_- TMP5

ACC_- CURF - 2

CALL SAS9

CALL ERSE

TMP4 (MAT4- L)2-6, 16

MATL4- MATL + MINC I

ACC 4- (MATL)I_6 ' 16 I

ACC = ITMP4 ?____NO

"I

--qTEMP_TMP5- 1 I

!
i

Figure 4.26 Subroutine OUTC (Part I)
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Z56

EXIT
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YES

1
SAS9 (See Fig. 4.19)

EIASE(See Fig- 4.Z4)

Figure 4. Z7

NO
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NO
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=I?
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(IVIATC) 4" (TEIVIP)

(IVIATL)I4,. I _9(hiATL)I4
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ACC 4- cuRF- Z 1

CALL SAS9

EXIT v

Subroutine oUTC (part II)
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ing bits are examined by the normalize instruction which causes

a left shift of the accumulator until a 1 is sensed in bit position

two. The number of shifts required is held in SHCTR. Note that

if the initial 1 in a word were in bit position k, only k-i shifts

would be required. For this reason, CTR is increased by 1 the

first time the normalize instruction is used in processing a parti-

cular word.

Each time a 1 is detected in a bit of CLK, an exit is

made to OUTC (See Figure 4.26). In OUTC, the first step is the

subtraction of a time increment (CLKW) from the clock word of the

matrix line under examination. The first 8 bits are masked out

and the result is compared with zero. If it is not zero, the result

is compared with a word CLKM. Any time the subtraction result

is less than the contents of CLKM, it replaces those contents.

Thus, at the end of a pass through SCAC, CLKM contains the next

time increment and is accordingly entered into CLKW. To ensure

this operation CLKM is set to 32, 273 prior to each pass through

SCAC. On the first pass of the simulation CLKW is set to zero so

that the only result of the first pass is a determination of the next

time increment.
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In those cases where the subtraction of a time incre-

ment results in a zero in the last 8 bits of the clock word, the

subsequent processing varies, depending on the nature of the line

under examination. The label word is then examined in order to

determine whether it corresponds to a signal, storage element,

or gate. In every case the flag bit is checked and if the matrix

label is flagged the analyzer routine is called.

In the event the line corresponds to a gate, the zero

results indicate that a propagation delay has elapsed and the gate

output undergoes a transient. This requires the erasure of the 1

in the matrix line position of CLK, and the entry of a 1 into the

corresponding element position of a register called TRN. Register

TRN is a register with the format of the interconnection words of

a matrix line and its function is to maintain a list of circuit outputs

undergoing transients to be used in connection with SCNT.

Entry of the 1 into TRN is accomplished by subroutine

SA$9. The gate number, stripped from the label word, is added

to PCTR and stored in TEMP, while the accumulator is loaded

with the address stored in CURF decremented by 2. Recalling

the operation of $AS9 (Figure 4.19) this ensures entry into the

register addressed by CURF .
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The erasure of the 1 in CLK is accomplished by a

similar subroutine ERSE. ERSE operates in a similar manner to

SAS9 with CTR playing the role of TEMP and CLKI being inserted

in the accumulator. The result is, however, the "EXCLUSIVE-

ORing" of a 1 into the desired bit position. This results in an

entry if the bit were a O, and an erasure if it were a 1.

Should the matrix line in question be that of a storage

element the processing is essentially the same, with two additions.

First, since storage elements have two outputs, both will undergo

a transient, so that a 1 is entered into both bit positions of TRN

which correspond to that element. This is done by two calls to

SAS9. Additional speed, here, could be obtained by an externally

imposed variation on SAS9; if events prove this desireable it will

be done. Secondly, for reasons to be explained in connection with

the RS and JK subroutines it is necessary to set to zero the

transient bit in al___lthe matrix lines corresponding to that storage

element.

The processing is somewhat more complicated if the

matrix line refers to an input signal. First the fact that the last

8 bits are zero following the subtraction of the time increment

does not mean that the entire clock word is zero. Recall that in
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the matrix line the entire clock word is available for timing input

signals. For this reason, the first step in P line processing at

POUT is to check the entire clock word for zero. If it is not, then

the signal is not ready to change state. In this event the contents

of CLKM are compared with 256 and the smaller number replaced

in CLKM. This ensures that if any signals are still active, the

next time increment will not cause a P line clock word to go

negative,

If, however, the entire clock word were zero, then the

signal will undergo a change. The label is again inspected. If the

signal represents a level change only, a 1 is entered into the

corresponding bit of TRN and the corresponding bit in CLK is

erased (No more transients on this input! ).

If the signal represents a single pulse the processing

depends on whether the leading or trailing edge transient is under

consideration. The presence of a leading edge transient is indi-

cated by a zero in bit position 14 of the label. This bit is always

initially zero. During the first time this line undergoes a

transient it is set to 1 so that the next time it will indicate trailing

edge. A leading edge of a pulse results in the contents of storage

word two (the pulse duration) being entered into the matrix line

I
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clock word. A I is entered into the proper bit of TRN but the i in

the P-line bit position of CLK is not erased. On the second pass

the trailing edge is treated just like a level change which, for

practical purposes, is what it has become.

If the signal represents a periodic pulse, bit 14 of the

label is used to indicate which of the storage words are to be

copied into the clock word. If bit 14 is O then the contents of

storage word two (Dl) become the contents of the clock word,

otherwise, the contents of storage word three (D2) are used. In

either case a 1 is entered into the proper bit of TRN; and in no

case is the 1 in the corresponding bit of CLK erased.

After all the matrix lines indicated by CLK have been

examined, the contents of TRN are "EXCLUSIVE-ORed" with the

contents of CURR, which has the effect of up-dating CURR. At this

point the processing by SCAC is complete.

If the tests fail to indicate a pulse type, transfer is made

to subroutine ERR2. This causes the machine to halt after typing

out "E2" In contrast to ERR1, ERR2 can be entered in many ways.

For this reason the address from which the entry to ERR2 was made

is stored in the A Register of the computer console and can be used
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in error analysis. Table 4.1 shows a list of A register readings

and the corresponding reason for entering ERR2.

It is well to note in connection with the preceding dis-

cussion that each time a new propagation delay is indicated in SCNT,

the value of this delay is compared with CLKW. If it is smaller,

it will determine CLKW for the next pass through SCAC.

Another point worth discussing is the use of the register

CLK. It may be argued, at least for small systems, that it is

faster to scan each matrix line clock word in turn, checking each

word for activity. This argument has greater validity if many

transients occur simultaneously. To date, the experience indicates

that simultaneous transients are relatively rare and it is believed

that the present method is faster.

4.12 The Transient Scan

The second phase of the simulation, routine SCNT,

consists of an examination of the contents of TRN, and, if

necessary, a comparison of the contents of TRN with the inter-

connection words of the matrix. It will be recalled that those

matrix lines correponding to external inputs contain no inter-

connection words; thus, only the G and S lines are involved in SCNT.

!
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"A" Register Reading Cause of Error

(OCTAL)

2430 No Input Bit Designated

RS Flip-Flop

3027 No Pulse Type Designated

P line

3111 Improper Value of MATL

During R einitializ ation

3467 No Input Bit Designated

JK Flip-Flop

3604 No Input Bit Designated

JK Flip-Flop

Table 4.1 "A Register" Reading for ERR2 Outputs
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The flow chart for SCNT is shown in Figure 4.28 along

with the flow chart for the auxilliary routine SCAT. The initial

step is an examination of the first word of TRN. If it contains all

zeroes, the next word is examined, and so on until all the words

of TRN are checked.

If any word in TRN is not all zero, it is compared with

the corresponding interconnection word of all the S and G lines.

Word WINC, which is incremented by one, each time a new word

from TRN is examined, is used to assure that only the correspond-

ing interconnection word is compared with the word from TRN. If

the words being compared have a I in common, then the circuit

associated with the interconnection word has a transient on one of

its inputs. This results in a call to routine SCAT.

Subroutine SCAT has the job of determining tye type of

element associated with the matrixline in question and of trans-

ferring control to the proper processing routine. The interro-

gation of the label is accomplished by rotating the label word one

bit to the right which enables the nature of the matrix line to be

completely specified by the first and last bits of the rotated words.

A l in the first bit indicates a storage element. The last bit now

indicates the combinatorial function or the nature of the storage
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I SCNT_Fig. 4.24) SC_T

I WlNC_- WlNC TMP24- MATR

ACC4- TRNI MATC4- MATL + 1

I _ MATR 4-MATC + I
I TRN_-ACC I CURRY- CURW

YES .. _ NO TBIT _- 0

I _-_ (TRN) = 0? >-_ (MATL)I+I4-(MATL)j

[ACC.- (MATR)_9 (T_RN)I

YES _ _------ -l-_ '
I - G_ --°_Ph ,

_, JK RS

CALL ANALYZER I
i,

CALL SCAT I

CALL ANALYZER I NO ACC < CLKr

ACC _- MATL + MINC I EXIT

OR (See Fig. 4.29)

JK (See Fig. 4.33)

RS (See Fig. 4.30)

I
I

I
I

I

I
I

i

ANALYZER MEANS STATIS-

TICAL ANALYSIS SUBROUTINES

"-_ WINC_- 1 + WINC F

Figure 4.28 Subroutines SCNT and SCAT
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element accordingly as the first bit is O or I.

Once the label has been interrogated control is trans-

ferred to the proper subroutine which processes the matrix line

in a manner to be discussed in detail subsequently. Any system

element which has its state changed results in a modification of

CLK.

When each of the words of TRN are completely pro-

cessed, it is set to zero if it is not already zero. Thus prior to

the return jump to SCAC, TRN is all zeroes and CLK reflects

the current status of those elements which will undergo changes.

Prior to and subsequent to the call to SCAT the label is

interrogated for flags. Any flags result in a call to the statistical

analyzer.

4.13 The And-Or Subroutines

The AND-OR subroutines are designed to examine the

inputs of any combinatorial element and modify its state

accordingly. They are used in two phases of the program. In

initialization (Figure 4.23) each gate in turn is scanned by the

AND-OR subroutines and the output modified as needed. In normal

I
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operation the gates are scanned only if the transient register (TRN)

contains a 1 in a position also contained in the input matrix line of

that gate. Thus, normally the gates are only checked by the AND-

OR routines if one or more inputs undergoes a transient.

The AND routines will be discussed first since they

contain routines used in common with the OR routines.

Any AND or NAND can be in one of the following four

states at any time:

(a) the ON state. The ON bit in the label word is 1

and the status bit is 1 or O depending on whether the

gate is AND or NAND respectively. This corresponds

to the case where alI inputs are at I and any propa-

gation delays have elapsed.

(b) the ON-GOING state. The label is the same as

that of the ON state, however, the least significant 8

bits of the clock word are not zero. This is the case

where a circuit has just had all inputs set to 1 and

the propagation time has not elapsed.

(c) the OFF state. Here the ON bit is zero and the

status bit of the label word is O or 1 depending on

I
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whether the gate is AND or NAND respectively.

The last 8 bits in the clock word are zero. In this

state, at least one input is not a i.

(d) the OFF-GOING state. The label is the same as

the OFF state but the last 8 bits of the clock word are

not zero. This corresponds to a transition from ON

state to OFF state during the propagation delay.

It is necessary to postulate a set of "ground rules" for

the performance of AND gates. These rules are somewhat

arbitrary and it may be possible that certain sets of circumstance

will require modifications of these rules:

I. If an input transient makes all inputs l_s, and

the circuit is in the OFF state, it is changed to the

ON-GOING state by the copying of the 8 most signi-

ficant digits of the clock word (the delay) into the least

significant 8 digits.

II. If an input transient makes all the inputs l's,

and the circuit is in the OFF-GOING state, it is

changed to the ON state.

!
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III. If an input transient makes all the inputs 1,

and the circuit is in the ON or ON-GOING state,

no change is made. This rule is included to cover

those cases arising in initialization and multiple

transients.

IV. If the input transient makes at least one input

0 and the circuit is in the OFF or OFF-GOING

state no change is made.

V. If the input transient makes at least one input

0 and the circuit is in the ON-GOING state, it is

returned to the OFF state.

VI. If the input transient makes at least one input

0 and the circuit is in the ON state, an OFF-GOING

state is initiated by entering the delay into the 8

least significant digits of the clock word.

With these ground rules, the initialization can occur by

simulating the presence of a transient and checking each gate in

turn.

I
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It is also worth noting that in the ON-GOING or OFF-

GOING states the label indicates the future status.

Figure 4.29 shows the flow chart for the AND routines.

Entry is always made from SCAT (Figure 4.28) so that MATL,

MATC, and the initial value of MATR are all defined prior to the

actual entry. First the clock word is examined to determine if

the gate is undergoing a propagation delay; if so, steering word

TBIT is set to a convenient non-zero value. Then a word by word

comparison of the current status register (CURR) is made with the

interconnection words of the matrix line.

If all the inputs to the gate are contained in CURR

then the transient is such as to make all inputs 1. Then TBIT and

bit 7 of the label word must be interrogated to ascertain whether

ground rule I, II, or ILI applies. If label bit 7 is a 1, ground

rule III requires an exit. If the label bit is zero, and TBIT is zero

then ground rule I requires the initiation of the ON-GOING state;

if TBIT were 1 ground rule II requires a return to the ON state.

In either case the label bits 7 and 8 are changed. This is accom-

plished by "EXCLUSIVE ORing" the label word with a word which

contains l's only in bit positions 7 and 8. The only difference in

processing occurs with the clock word. If TBIT is zero, the 8
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AND (Fig. 4.28)

YES _ v NO

ACC _- (CURW}.(MATR} i

N_ACC = (MATR)? > YES

¼

(MATL)7 = 0?

EXIT I_

y----_T BIT = 0 ?

ANMT

(MATC)9_I6 _-
0

TBIT 4- (MATC)9_I 6"3

i

MATR 4- MATR + 1 1CURW_- CURW + 1

i

\No

> NO y_(MATL)7 = 0?

NO & EXIT

I ANDX <TBIT = 0 ? _S

ACCj+10 ÷ (MATL)j I

CTR4- ACC + PCTR

CALL ERSE

(MAIL) 4- '1400 {9 (MATL)

T

IACCj+ + _MATC)j
(MATC) 4- (MATC) @ACC

EXIT

Or (Fig. 4.28)
NO

<(MATC)9_I 6 = 0?>

YE_ ACC4- (CURW)It (M.ATR)
NO

ACC = 07

YES ." _ .NO

_-_(MATL)7 = 0 ?

No <TBIT =% ? ,_XIT
All Exits are to pro

gram calling SCAT. ANDX

i>

jTBIT 4- (MATC)9_I 6 I

I

MATR4-MATR + 1

I CURW4- CURW + 1

i
_--<CURW < CURF?

_TBIT "0_ >NO]
ANDX ANMT

Figure 4.Z9 The AND-OR Subroutines
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most significant bits are copied into the other 8 bits; if TBIT is

1, zero is written into those bits.

In the event that CURR does not contain all the inputs

of the gate, then TBIT and bit 7 of the label are examined to

determine which of ground rules IV, V, or VI applies. If the

label bit is zero, then ground rule IV re:luires an exit. If the

label bit is one and TBIT is 1, then the ground rule V re_luires a

change of label bits 7 and 8 and the insertion of zeroes into the 8

least significant bits of the clock word. The processing under

ground rule V is identical to that of ground rule II. Similarly if

label bit 7 is 1 and TBIT is zero, ground rule VI can be processed

identically to ground rule I.

Each time the state of circuit is changed, a call to ERSE

is made. Subroutine ERSE (Figure 4.24) examines the contents of

CTR, and EXCLUSIVE-OR's a 1 into the corresponding bit

location of CLK. Thus, if an ON-GOING or OFF-GOING state is

initiated, a 1 is written into that location; if an ON or OFF state

is initiated the previous 1 in that position is erased. Thus the

contents of CLK still indicate which matrix lines contain non-zero

bits in the least significant half of the clock word.
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The OR subroutines operate in a similar manner except

that now the states correspond to new input configurations, and a

new set of ground rules applies. In the description of the states,

the labels and clock bits are exactly the same as for the same state

of an AND element.

The states of an OR or NOR element are as follows:

(a) The ON state corresponds to the case where at least

one input is non-zero and the propagation delay has

elapsed.

(b) The OFF state corresponds to the case where all

inputs are zeroes and the propagation delay has

elapsed.

(c) The ON-GOING state corresponds to the transition

from OFF to ON state during the propagation delay.

(d) The OFF-GOING state corresponds to the transition

from ON to OFF state during the propagation delay.

The ground rules for the OR subroutines are listed below:

I. If the input transient makes at least one input take

on a non-zero value, and the circuit is in the ON or

ON-GOING state, no change is made.
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If. If the input transient makes at least one input

non-zero and the circuit is in the OFF state, then

a change to ON-GOING state is made.

III. If the input transient makes at least one input

non-zero, and the circuit is in the OFF-GOING

state, then the circuit is returned to the ON state.

IV. If the input transient makes all inputs zero and

I

I

the circuit is in the ON-GOING state the circuit is

returned to the OFF state.

V. If the input transient makes all inputs zero and

I

I

the circuit is in the ON state, a change to the OFF-

GOING state is made.

VI. If the input transient makes all inputs zero and the

I

I

I
I

I
I

circuit is in the OFF or OFF-GOING state then no

change is made.

Since the initiation of an ON-GOING or OFF-GOING

state requires the entry of the 8 most significant bits of the matrix

line clock word into the least significant 8 bits, and the initiation

of the OFF or ON state requires the setting of zeroes into those 8

bits, and since both cases re.luire a change in bits 7, 8 or the

label, the processing can be done by parts of the AND subroutines.

I

I
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The function of the OR subroutines is then merely to determine

which ground rule applies and to transfer to the proper entry point

in the AND routines. Thus, the OR subroutines in Figure 4.29 are

relatively simple. The last 8 bits of MATC are examined in

order to determine if the circuit is presently undergoing a propa-

gation delay. If so, TBIT is made non-zero. Once again CURW

and MATR are compared word by word. If any of MATR is con-

tained in CURW, then the transient made at least one input non-

zero. If none of MATR is contained in CURW, then the transient

made all the inputs zero.

If the transient made the inputs all zero and bit 7 of

the label is 0, then ground rule VI requires an immediate exit.

If bit 7 were 1 and TBIT were also I, then ground rule IV requires

a change of bits 7 and 8 of the label and the insertion of zeroes in

the last 8 bits of MATC. This is done by entering the A sub-

routines at AMNT If bit 7 were 1 and TBIT were 0 then ground

rule V calls for the insertion of the delay into the last 8 bits of

MATC and a change of bits 7 and 8 of the label, actually done by a

jump to ANDX.

On the other hand, if the transient made at least one

input non-zero, and if the label bit 7 is 1 then an exit is called for.

I
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A combination of label bit ? equal to 0 and TBIT being 1 calls for

a jump to AMNT (ground rule III). The remaining combination of

TBIT and label bit 7 both zero calls forth a jump to ANDX as

required by ground rule II.

4.14 The RST Storage Elements

The RST elements are treated in a manner similar but

not identical to that of the AND and OR subroutines. The major

difference is that the inputs to RST element are separate and

distinct, and the response to these elements depends not only on

the input but on the state of the device.

The states of the RST element may be defined as follows:

(a) The ON state. The set output is a 1. All

propagation delays have elapsed.

(b) The OFF state. The set output is a 0.

All propagation delays have elapsed.

(c) The ON-GOING state. The device is under-

going a change from OFF state to ON state

curing a propagation delay. The status bit is 1

in this case.

(d) The OFF-GOING state. The device is under-

going a change from ON state to OFF state during

!
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I a propagation delay. The status bit is 0 in this case.

!

!

!

below:

The ground rules for the RST elements are listed

I. Positive transients are necessary, but not

sufficient, to activate an input.

I
I

I
I
I
I

I

I

II. If the element is in the ON or ON=GOING state

any transient on the set input has no effect.

III. If the element is in the OFF or OFF-GOING

state any transient on the reset input has no effect.

IV. Any input transient, not eliminated by I, II, or

III and arriving when the circuit is in the ON or OFF

state, induces a transition to the OFF-GOING or

ON-GOING transient respectively.

V. Any input transient, not eliminated by I, II or

III and arriving when the circuit is in the OFF-GOING

I

I

I

or ON-GOING state, causes a change to the ON or OFF-

GOING state respectively.

The flow chart for the RST subroutine is shown in

Figure 4.30 and 4.31. The first step is a check on the polarity of

I

I



I
I

I

I
I

I
I

I
I

i
I

I
l

I
I

133

RS (Fig. 4.24)

ACC,_- CURR + WING
GURW4.- .A.GC - 2

ACC+ (CURW) e (TMP2)

CC = O?

EXIT

TINP

STAT 4-

AGCj+ 2 4- (MATL)j

(MATL) 8

YES.,_ STAT = 0?

_T_(MAT L)7 =0 ?

34- 0 #

TMP3)_+84- (

+

- MATL - MINC ]

ACG4- (MATL) z 6, 16 ]

]YES/ _ - 9 NO

_ACC = TMP5?_---_

%
EXIT

i?_0
/ ACGI6 =\

+
YES < STAT = 0 ?

EXIT

YES

+
IMATL4- MATL + MING ]

COMN (Fig. 4.31)

I Figure 4.30 RS Subroutines (Part I)

I
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COMN

JMATC 4- MATL

]

N[_-(TMP3 = 07>

+1 I

YES LI

•7 (MATC)9_I6

(MATC) 4- TMP3 @ (MATC)

ACC4- MATL - MATI

ACC 4- ACC -[- MINC

CTR4-ACC + 1

CALL ERSE

ACC = TMP5 ? /

- MINC JI MATL.- MATL

EXIT I

(MATL)+-'I400 @ (MATL)]

MATL4- MATL + MINC J

ERSE (See Figure 4.24)

This portion is common to both RS and JK subroutines.

Figure 4.31 RS Subroutines (Part II)

I
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the transient. The proper word of CURR and the contents of the

word of TRN containing the transient are ANDed together. The

result will be non-zero only if the input were a positive transient.

i zero result causes an immediate exit.

The contents of label bit 8 (the status bit) are stored in

STAT for use as a steering word. Ground rules II and III are now

applied. The label word is rotated 3 units. If the first bit is a 1,

the transient is on the reset input. STAT is examined; unless it

is a 1, an exit is made. If the last bit of the rotated word is a 1,

the set input contains the transient, and unless STAT is zero, an

exit is made. A final check is made by shifting right one more

unit if neither of the set or reset contained transients. If the

last bit is 1 the T input is triggered and processing procedes; if it

is not a 1 then the label word is not a valid word and E2 is printed

out before a machine halt. (See Table 4.1.)

In the event that the preceding tests indicate processing

should continue, the transient bit is examined. If label bit 7 is

zero it means that the element is in either ON or OFF state and

ground rule IV applies. If this bit is 1, the circuit is either ON-

GOING or OFF-GOING and ground rule V applies.
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If the transient occurs during ON or OFF state the

delay of the input triggered is stored in TMP3; if not, a zero is

written into TMP3, and the processing continues.

For convenience in modifying the CLK register it was

decided to make only one entry into CLK regardless of the number

of matrix lines associated with the RST element. It proves con-

venient to make this entry in CLK correspond to the first matrix

line. To accomplish this, the matrix label words are scanned

upward until a new S number is sensed, or a non-S element label

occurs.

The clock word of the first matrix line of the S

element is then modified following an examination of TMP3. If

TMP3 is zero, the last 8 bits of the clock word are set to zero;

if not, the contents of TMP3 replace those last 8 bits. The

number of the matrix line is computed and stored in CTR. A call

to ERSE results in the proper bit of CLK being changed.

The routine makes a down scan now until a word with a

different S number is sensed or the all zero "S number" of the

first word in the delay table is sensed. At each step of this scan

label word bits 7 and 8 are changed. Note that application of
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ground rules IV and V requires only that these bits be changed

regardless of their prior status. At the completion of the down

scan control is returned to SCNT.

A point worth more discussion occurs here. The reader

will, no doubt, have noted the relative complexity of the operation

which results in a longer processing time. Some of this time

would be saved if a fixed, rather than variable, number of matrix

lines were used for the RST elements.

This would result in the insertion of several blank lines

in the matrix. However, up and down scans could be done

without label interrogation; hence, much faster. But an increase

in speed would be offset by an increase of matrix size and by an

increased time required to check the blank lines during SCNT.

4.15 The JK Flip-Flop

The JK flip flop is treated separately because it illus-

trates a special point. The JK element to be treated here is not

the theoretical JK element described in switching texts, but is the

practical JK element manufactured as a microcircuit. This

causes a great increase in the problems involved in processing.
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The theoretical JK element could be handled in a

manner analogous to the RST elements with the inputs in question

being only J or K or with the addition of a clock input. The

processing would be similar in nature with an inspection of the

transient's polarity, and the state of flip-flop yielding the neces-

sary information for any required state changes.

Figure 4.32 shows the logic diagram of a JK flip-flop

as presented by Signetics,

from a single silicon chip.

Inc.: This is a monolithic circuit

The relatively large number of gates

is required since all connections are direct coupled. Recall from

the introduction that difficulty in obtaining large capacitances for

coupling was a property of the monolithic circuits.

This circuit has five inputs and the output is generally

determined only after an examination of all or most of these inputs.

The J, K, and C inputs are normally used for synchronous opera-

tion, with the truth table shown in Table 4.2(a). The PJ and PK

are the preset inputs and operate asynchronously with the truth

table shown in Table 4.2(b).

Using the logic diagram of Figure 4.32 switching table

of Table 4.3 was obtained. This table gives all the cases where

I
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0 1 1

1 0 1

1 1 0
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(a)

PJ PK

0 0

0 0

0 1

0 1

1 i 0

1 ] 0

1 i 1

1 I 1
J

(b)

Note: The indicated transitions

are initiated by a _ tran-

sition on C.

Synchronous Truth Table

QN QN+I

] o o

1 1
Note:

0 0

1 0

0 1

1 1

.t_-o

Preset Truth Table

When both PJ and PK

occur, no change takes

place, the final state is

determined by which in-

put remains at 1 last.

Table 4.2 JK Element Truth Tables
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Initial Final
INPUTS State State

PJ PK C J K QN QN

I o o _ _ o
o _ o _ o

i _ 0 _ _ _ 0
_ _ o _ o

i

o I o _ _ _ o
o I ¢ _ o _ o

_ o _ _ o
I _ o _ o

o o _ I _ o
o o _ _ _ _ o

o _ _ _ o
o _ _ _ _ _ o

0

Transient from 1 to 0 on input.

Transient from 0 to 1 on input.

"Zero Level" on input.

"One Level" on input.

Level on input immaterial.

Table 4.3 JK Element Switching Table
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an input transient gives rises to a change in state of the device.

Much more complicated rules than the case of the RST flip-flop

are involved here, and the processing is correspondingly more

complex.

The flow chart of the JK processor is shown in

Figures 4.33 and 4.34. As in the case of the RST element the

first check made is on the polarity of the input transient. From

Table 4.3, the only inputs activated by a positive transient are

the PJ and PK inputs. If the input transient were positive, then

an exit is made if neither PJ nor PK is the input in question. If

either is the active input a further test differentiates between

them. If the PK input is involved, the status (STAT) of the

element is then interrogated, unless it is 1 an exit is made.

Similarly if PJ is involved an exit occurs unless STAT is 0. In

the event no exits are made, entry into SCBD is made. Note that

the input containing the transient is still specified by the contents

of TEMP.

In the case of the negative inputs the inputs are then

individually inspected. Those inputs requiring special status

conditions are checked for those conditions. If they are met

I
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JK(_g. 4.24)

ACC 4- CURR INC

CURW* WINC -2

ACC + (CURW) • (TMP2)

ACC_= 0? > NO

?
EXIT

ITEMP + 8

(MATL)14= 1

_ "VFL_
STAT = I ? _r'i'__ ,

sTA 
EXIT

I TEMP 4- 12

(MATL)13= 1 _S

= 0? xYES

I
I

STAT = O?

EXIT _.

ITEMP e-16

EXIT

YES

EXIT

STAT

TEMP + 0

TEMP

I
STAT =

EXIT

.4 I

,%_SCBD (Fig. 4.34)

(MATL)10 = 1 ?_ES

STAT 0?

EXIT

' TEMP + 24

ITEMP_20

I Figure 4.33 JK Subroutines (Part I)
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SCBD

I TMP6 _- '34

TMP1 4- '2

INDEX 4- -.6

TMP5 _- (MAT L)2_6, 16

+

MAT L _- MAT L - MINC IYEs..... _' " "NO
(MATLh-6,16--TMP_"_>_

TMP8 4- MATL |

INDEX + INDEX + 1 I

YES

_<i_D_.x= o?>

I TMPlj 4- TMPlj+ 1 1
ACC4- TMP10 (MATL) ,

YES _r
<ACC = 0

NO
> !

TMP6 _ TMP6 • TMPI_

|CURW _ CURR

MATR _- MATL + 2

(MATR)- o._> YEs
+ (MATR) @ {CURW}I

% a I

NO <'ACC'= 07> YES
_ TMP64- TMP6 @ TMP1

"-_MATL_- MATL + MINC

Figure 4.34
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TEMP4- CMPW + TEMP

TMP4 4- TEMP + 1

ACC4- TMP6 • (TMP4)

NO _ YES

_-i ACC--(TEMP)>

+
TEMP_- TMP4 + 1

TMP44- TEMP + 1

ACC 4- TMP60 (TMP4)

EXIT

<
I YES

ACC =
(TEMP) yE_ S

T BIT = O? >

i

TMP3 _ 0 _---

COMN (Fig. 4.32-)

__ MATR4- MATR + 1

CURW 4- CURW + 1
I

ER_ CURW< CURF?

JK Subroutine (Part II)
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input processing continues in routine SCBD, otherwise an exit to

SCAT is made. Again the flow chart indicates that the input

containing the transient is indicated by the contents of TEMP.

Figure 4.34 shows the flow chart for routine SCBD.

The first step is a scan to locate the first line of the matrix lines

common to the JK element. This scan merely indexes back the

matrix line and checks the label until a new S number is reached.

After this, during a down scan, a new input word is

constructed in TMP6 which gives the status of each of the inputs

in the last five bits. This word is initially set to '34 which

represents of the effect of non-connected inputs. The first matrix

line is examined and its input bit is compared with the input bit

for the J input. If there is no agreement, then the J input is

unconnected and no change is made in the last bit of the contents

of TMP6. If there is agreement, this last bit is made to agree

with the status of the J input level. This process continues until

all five inputs have been examined.

At this time necessary conditions on the inputs for a

change in state of the JK element are compared with the status of

the inputs as shown in TMP6. The necessary conditions, which
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vary according to which input is excited, are stored in a list

called CMPW. The selection of words from CMPW is determined

by the contents of TEMP.

There are several "don't care" conditions listed in

Table 4.3. Account is taken of these by setting to zero the bits

in both TEMP and the comparison word which corresponds to

"don't care"_nputs. Amask/or this purpose is stored in CMPW

immediately behind the corresponding comparison word. In most

cases, two comparisons are required, so thattwo comparison

words are compared with the contents of TMP6. If only one com-

parison is needed a dummy word in CMPW is used.

In the event that either comparison is satisfied, TBIT

is tested. If TBIT is zero, the delay associated with the input

triggered is compared withCLKW and inserted into TMP3. If

it is less than CLKW, it also replaces CLKW. If TBIT is not

zero, a 0 is inserted into TMP3. The address of the label word of

the first matrix line of that element is inserted into MATL, and

control is transferred to the RS processor at COMN. All sub-

sequent processing is as described in that section.
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The processing involved in the treatment of the JK

element is considerably more than in the case of the RST element.

As long as the status depends on more than one input the processing

time will be much longer. (See Chapter VII for an estimate on one

example. ) Any time the user can make simplifying assumptions it

will usually pay him to do so. For example, if JK elements are

connected as binary counter elements, and being used for practical

purposes as RST elements, the user should consider calling them

RST elements to gain speed. Here the C input could be considered

as the T, the PJ input as the R, and the PK input as the S. Note

that the RST processor uses positive transitions on T, thus any

pulses appearing on C should be inverted, and the counter stages

should be driven from the "wrong" side of the driving flip-flop.

4.16 Reinitializer

In repetitive statistical experiments, it is necessary to

reset the system to the same set of initial conditions before each

experiment. This requirement is independent of the nature of the

statistics involved or in the nature of the analysis; thus, the re-

initializer is included in the main program. Its calling address

with mnemonic REI is stored in location '471 so that it may be

accessed by any analyzer. The flow charts are shown in Figure 4.35.

!
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I TMP4 4- ACCTMP54- 0

ENTRY

SINB 4- 0 [
MATL _- MATI

INI_- INIT + 2

INDEX = _ 16 [ ]

ACC + (INI)

¼

i

I

I

I

I

P5 8 4- 1 [

I _A_I_A_>__ _

'MATL __ <
_MATG ?_---

+

MATL = MATF?> <
__._

I CALL INS

EXIT

I

I INS (See Fig. 4._4)

148

ACCj_I 4- TMP4.3INDEX4- INDEX + 1

E
_o<_o_x:0._>_s
INI+ INI + 1

MATC+ MATL + 1

TMP24-MATC + 1

(MATC)4- (TMP2)

,,(MATL_I4 _ - 0
J (MATL)4-'(_4.AT L)_ TMP5

+

I MAT L 4- MA__L + MINC

L_ (MAT L_-(MAT L)_" 1400 ["

•_ SINB 4- SINB + 1
4,

YES /SINB .=0"_ \NO

, k _6 " /

_ TMP34- (MATL)2_6 '16

| ACC. + TMP3

(MATL)78 q- 0

(MAT L).- (MATL)_BTMP5

MATL"- MATL + MINC

(ACC)q- (MAIL)z_6 '16

I Figure 4.35 Reinitializer Flow Chart

l
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Its operation is based on a bit by bit examination of the

register INIT. Initially MATL is set to MATI, a zero is inserted

in exit word SINB, and INIT + 2 is set into location INI. The index

register is set to -16 and contents of the address stored in INI are

set into TMP4. Location TMP5 is initially zero; it is used to hold

the initial status bit of the element under consideration. Any time

a matrix line label contains 1, TMP5 is also set to 100.

The next step, once the status bit is loaded into TMP5,

is to determine whether the line addressed by MATL is P, G, or

S line. This examination is done examiniI_g MATL, relative to

MATI, MATP, MATG, and MATF.

If MATL is at least equal to MATI but less than MATP,

it represents a P line. In this case, the contents of storage word

one in its matrix line replace the contents of the clockword. The

label bits 14 and 8 are set to zero and replaced by the contents of

TMP4 respectively. The address in MATL is incremented by

MINC and a transfer to NXTL (next line) is made.

Should the value of MATL indicate the line in question is

a G line, it is necessary to reinitialize bits 7 and 8, the ON bit and

STATUS bit respectively. The status bit of the line label is
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compared with the contents of TMP5. If they are the same no

change is made and a transfer to NXTL is executed. If they

differ bits 7 and 8 are both changed prior to the exit to NXTL

If the bit in INI refers to an S element, somewhat more

complex processing is involved. Recall that INIT holds two bits

for each S element and that the status bit in an S line label refers

to the set side. For this reason the first bit in INI for a given S

element is skipped. This is accomplished by means of an exit-

word SINB which was initially zero. Each time an S element bit in

INI is examined SINB is incremented by 1. S element reinitial-

ization only proceeds on occasions when SINB is even. In this

case a pseudo label for the S element is created by masking out all

label bits but the 2nd, 3rd, 4th, 5th, and 16th. All subsequent

matrix lines which match those bits have bit 7 (transient bit) set to

zero and bit 8 set to the value stored in TMP5. When the label

line indicates the next highest S number an exit to NXTL is made.

The next line routine (more properly, next element)

causes the contents of TMP to be shifted left once, while augment-

ing the index register by 1. The index register which here functions

as a shift counter can reach zero. If it has not, the preceding

analysis is repeated operating on the next bit on INI (first bit of

I
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TMP4). If the index register had reached zero, a new word

from INI is inserted in TMP4 and index register is reset to -16.

The exit from REIN is controlled by the value stored in

MATL. When it finally reaches the value of MATF the system is

reinitialized and an exit is made.

This method of controlling the exit is used as opposed to

an examination of INIT, because the last word in INIT will in

general be a fractional word, that is, not all its bits will be

utilized for status information.



|O

I

I

I
I

I

I
I

I
I

I
I
I

I

I
I

I

I

CHAPTER V

THE SUPPLEMENTARY PROGRAMS

5.1 General

It was considered desirable to construct the main

program in such a manner as to make it independent of the analysis

to be performed and of the nature of the device statistics. In

order to accomplish this purpose the analysis is performed by

means of flagged exits from the main program, and the delay

insertion is accomplished by transfers from the main program.

Several flagged exits are provided in the main program.

One is contained in SCAC (Figure 4.25) and is useful in determining

the time at which an element output changes. Two other flagged

exits are provided inSCNT (Figure 4.28). These are useful in

determining the time at which an element state was changed.

The analyses which can be performed using the flagged

exits are limited only by the ingenuity of the user. Therefore the

descriptions of routines in this chapter are of those which were of

most use to the author and those which it was felt would be most

exemplary.

152
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5.2 Delay Insertion

After the system has been initialized, and at every time

a system is reinitialized for a new simulation, it is necessary to

insert delays into the elements. These delays are chosen accord-

ing to delay statistics of the given element and are inserted into

the 8 most significant bits of the clock words in the matrix. Since

the method of selecting the delays depends on the chosen statistical

model, the delay insertion is done by subroutine which is entered

separately. The combined delay insertion routine and that portion

of the delay table forming routine which is not in the D card

processor are termed the delay package and are loaded together

into the machine.

The flow chart for a typical delay package is shown in

Figure 5.1. DDLY is that portion which forms the entries in the

delay table after the D card has made the line label, and DINS is

the portion which inserts the delay. The statistics of the delay in

the example shown are assumed to be a uniform density of delays.

The operation of DDLY is described under the discussion of the

D card processor on page 96

Subroutine DINS consists of the examination of each

matrix line label in turn. The first 8 bits of the word are masked
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I DINS DDLY

IMATL4" MATP I SKIP 1 COL_UMN

I "" _ MATL+ MATL + I
ITBLq- MATF + MINC _-- CALL HTBI

I ; TMP24-(_ATL)9_16 I SKIp(MAJ_L)"o4-2_-dLUMNSjNUM"

-----_ CALL HTBI
NO / _, YES (MATE) 4- NUM

I TBL +2[-

I --_TBL_TB,_.+2 I

I IcAL' N° -N ALT
I

I
I
I

I

I
I

I

NOEN

ITYPE "NO ENTRY"

[-_(MAT L) =0? \

IT YPE "G" l

_"S"

ACCj+ l0 + (MATL)j

ACC4- ACC @ '377

CALL BTDI

Figure 5.1

MATC4- MATL + 1

CALL RGEN

TMP1 ÷ ACC

TBL4- TBL + 1

TMP14-(TBL) 6 x TMP1
ACC. 4- T M9p-_.

IACCJ-8 + ACC _ TBL

I(MA_e_-ACC
IACC 4- MATL + MINC

• No< ACC<MAr_>_s
EXIT

IMATL+ MINC + MATL I--

RGEN described in _ C

HTBI (See Fig. 4.16)

The Delay Package

I

I
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words in sequence.

entire delay table,

out and the result is compared with each of the delay table label

If no comparison is made after scanning the

control is transferred to subroutine NOEN

which causes G or S number of the element in question to be typed

out following the words NO ENTRY.

If there is an entry in the delay table corresponding to

the element type, a typical delay is created. This delay is

governed by the statistics of the element type. For this example

it will be assumed that the element type is governed by a uniform

density of width W starting at delay B. This continues the example

begun in the discussion of the D card processor. It will be recalled

in this case, that the delay table entry has the most significant 8

bits representing B and the least significant 8 bits represent W.

Delay generation is accomplished by calling the random number

generator (See Appendix C.),

bits of the delay table entry,

multiplying the result by the last 8

rounding the result, and adding it to

the first 8 bits. The result is then stored in the first 8 bits of the

clock word of the element under examination.

The processing continues until all G and S lines of the

matrix have been examined after which a return is made to the

calling program.

I
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The NO ENTRY type out will occur on the first time

delays are inserted. As the program is presently constituted, a

total restart of the matrix maker is required with the addition of

the missing D card. Should it be desired, and should more

memory space be available, an improvement is possible. Pro-

vision could be made for the insertion of only the required D card

or cards. This would require a delay table scan before the E card

procession, since E card processing closes the delay table and

leaves no room for expansion.

5.3 The Sorting Subroutine

The sorting subroutine is a modification of the delay

package which permits the operator to select those components to

be sorted and includes the necessary routines to accomplish the

sort. The selection portion is shown in Figure 5.2. Essentially,

it makes a list of those components to be sorted and indicates

whether the components are to be chosen from above or below the

mean for that component type. This list is called the sorting

table; it is composed of two words per entry and is contained at the

end of the subroutine.

I
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FROM ANALYZER

TBLI 4- TBLS

OUT 4- SEX
TYPE "SORT"

ICALLST_T

IREADAC_RACTER 1

I \YES

N_" + ? /

4_
_ ? > YES

I ACC 4- ACC - '260 I

Y_ ACC< 'II >NO

Y_ ACC >__0 >NO

TEMP 4- ACC

TMP2 q- I0 X TMP2

TMP24- TEMP + TMP2

STRT (See Figure 4.15)

DINS (See Figure 5.3 )

SEX

TBLF _ TBLI

CALL DINS

GO (Fig. 4.24)

,_TMP3,6- TMP3 + 1

V
ACC. 4- TMP2.

j-lO j
ACC4- TMPI + ACC

(TBLI) _- ACC

TBLI4- I + TBLI

(TBLI) 4- TMP3

TBLI@ 1 + TBLI

RETURN CARRIAGE

LINE FEED

i •

TYPE "/"

RE T URN CARRIAGE

LINE FEED

Figure 5.Z Sorter Subroutine (Selection)
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The sorting subroutine makes use of another subroutine

calledSTRT, shown in Figure 4.15. This subroutine has the func-

tion of accepting a character inputted from the typewriter and

examining it for four symbols, G, P, S, or CR (carriage return).

A G, S, or P results in a return to the calling program with 0, 1, or

2 respectively in word TMP1. Should a CR be detected an exit made

to the address stored in word OUT. If none of these symbols occurs

a slash is typed out and the carriage returned and a new symbol is

awaited.

The sorting table is constructed in the following manner.

The index word TBLI is initialized to the first location (TBLS), and

the CR exit from STRT is set to the addres of SEX. The typewriter

is caused to type out "SORT" and to execute a carriage return. At

this point a call to STRT is made. If there are no elements to be

sorted the operator presses the CR button, otherwise a G or S is

typed in by the operator.

After this, the operator types in a string of integers repre-

senting the G or S number terminated by a plus (+) or minus (-). The

plus indicates that the element is to have delays chosen from above the

mean, while the minus signifies that the delays are chosen from

below the mean. The routine checks the symbols, binarizing the

G or S number until the plus or minus is sensed. An illegal

I
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symbol results in a slash type out and a carriage return,

which a proper symbol is awaited.

after

When the terminating symbol is sensed, a pseudo label

word is created. The binarized G or S number is shifted into bits

Z through 6 of this word and the contents of TMP1 are added to the

word. This word is stored in the first address of the sorting

table. The second address in the sorting table is set to 1 or 0

depending on whether an upper (1) or lower (0) sort is needed. A

carriage return and line feed are made and control is transferred

to STRT. If more elements are to be sorted, the process pre-

viously described is repeated. The sorting table is completed by

pressing a CR button. This time the exit from STRT causes the

next address in the sorting table to be labelled TBLF and control is

transferred to the main simulation routine at GO (Figure 4.24).

The use of the sorting routine requires some change in

the delay insertion procedure. The new version of DINS is shown

in Figure 5.3. Once again the uniform density function is assumed

for this example, although a change in assumed statistics would

cause only minor modifications. The first portion consists of a

search through the sorting table. For this search the matrix line

label word is stripped of all extraneous information by retaining

I
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DINS

ITBL+ MATF + MINC iTMP2 4- (MATL)9_ 16

t<(TBL)=TMP2> YZS

IACC_- TBL + 2

q TBL.-ACC i

CALL NOEN

HALT

TMP44- TMP4/2

TBLI4- TBLI + 1

.__(TBLI) = 0? > YES

NOEN (See Figure 5.1)

RGEN (See Appendix C)

EXIT

MATC4- MATL + I

TBL@ TBL + 1

TMP3 4- (TBL), o
9-16 I -o

TMP4 4- (TBL)

TEMPg+I_MAT L)2 9_1616
TBLI4- TBLS

+
[ACC - TBLI * z 1

i,
YES<AcC>__TBLF '>__0

1
+

f TBLI+ACC I--

CALL RGEN

ACC4- ACC x TMP4

TMP4_- ACC + TMP3

ACC. 4- TMP4.
j-8 j

(MATC) + ACC
ACC 4- MATL + MINC

YES
ACC > MATF

+
I MATL4- ACC

Figure 5.3 Sorter Subroutine (Insertion)
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only bit 16 and bits 2 through 6 and then compared sequentially with

all the pseudo labels in the sorting table.

If there is not entry in the sorting table the processing

proceeds as previously described in the section on delay insertion.

If there is a pseudo label word in the sorting table which matches

the stripped matrix line label, then the word following the pseudo

label is examined. This word determines the subsequent action.

If this word contains a 0, the density function width (W)

stored now in TMP4 is halved. Thus the numbers produced by the

random number generator are multiplied by W/2 prior to addition

to B. On the other hand if the control word is a 1 denoting an upper

sort, in addition to halving W, B is augmented by W/2. Then the

remaining processing is as described in the preceding section.

5.4 The Flagging Routine

The selections of the transient in the system to be

flagged is under the control of the user. At the time when flagging

is to be accomplished (see the next section for an example) the

ASR 33 types out "FLAG" followed by a carriage return and line

feed (CR-LF). The operator then types in anA for an alpha or

positive going transient or he types in a B for a beta, or negative

I
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going transition. The operator then types in the P number, the G

number, or the S number; terminating with a carriage return.

The machine then executes a line feed and awaits a new signal to

be flagged. If no further signals are to be flagged, an exit is made

by a carriage return.

If symbols other than those discussed above are entered,

the machine executes a CR-LF and awaits a legal symbol.

The flagging subroutine flow chart is contained in

Figure 5.4 and 5.5. The first symbol typed in is examined to

determine the nature of the transient. An A results in the storage

of instruction SNZ (skip if not zero) in location SIGN. A B results

in the storing of SZE (skip if zero), After this, subroutine STRT,

discussed in the last section, is called in order to determine

whether the flagged signal is on a P G, or S element. After this,

the sequence of numerals typed in is binarized until a carriage

return occurs.

The carriage return results in an examination of TMP1.

It will be recalled that if STRT detected a P, G, or S, then TMP1

contains 2, 0, or 1 respectively. In the event TMP1 contains a 2

or 0, the location of the matrix line label word is computed by

i
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FLAG

TYPE "/"

RETURN CARRIAGE

FEED LINE

YES
>

YES

A_

SIGN 4- SZE _-

_SIGN 4- SNZ I

ICALL STRT

IREAD A CHARACTER

.,,I,
I Part II (Fig. 5.5)

I

I

I

I

STRT (See Fig. 4.15)

I

Figure 5.4

I

I

IACC4- ACC -'260 ]

ACC_ ACC + 10X TMP2_
TMPe- ACC

TYPE "/"RET URN CARRIAGE
FEED LINE

Flagger Routine (Part I) Along with

Subroutine DTBI. DTBI is between

Points A and A'.

I

I
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TMP4 +- MATP

TMP8 _- MATG

From Fig. 5.4

TMP1 = 1 ? \
/

>1

TMP4 4- MATITMP8 4- MATP

SIGN_- SIGN _ '1000

ACCj 10
TMP2.

- j

TMP2. ACC + 1

TMPI 4- MATF

ACC 4- ..(MATF)2_6, 16

_, ES
-_ACC + (TMP1)2_6,16 1

= TMP2 >

[(TMPI)__ I ,I
+

---]TMP 14- TMP1 MINC I

ACC_- TMP2 - 1

ACC4- ACC X MINC

TMP2+ ACC + TMP4

N_O TMP2 < TMP8

E5

I(IMP2), 4- ITMP2_-I(TMP2)2-6, 9, 16

•_1 RETURN CARRIAGE

_FEED LINE

i
EXIT

Figure 5.5 Flagger Routine (Part II)

I
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multiplying the binarized P or G number by MINC and adding it to

the address in MATI (P line) or that in MATP (G line). The flag

bit in the computed address is then set to one. A check is also

made here to determine if the computed matrix line label word

lies in the proper group of matrix lines, i.e., an address com-

putedfor a P line must be betweenMATI andMATP. A computed

address which does not lie in the proper interval results in a type

out of E5 which indicates the address requested to be flagged is not

a legal address.

Should TMP1 contain a 1, the element to be flagged is an

S element. In this case a pseudo label word is created as was

done in the case of the sorter routine. The line index is set to

MATF and decremented until detecticnof lines whose S numbers are

the same as the pseudo label. These matrix line label words are

all flagged. In the event the S number requested to be flagged is

greater than the S number contained in MATF, then an E5 is

typed out. Following an E5 type out, the machine awaits a legal

symbol input.

After the flagging is completed, an exit is made to the

calling se.luence with the address of the flagged element stored in

TMP2.

I
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5.5 The Statistical Analyzer.

As an example, the time difference between two

transients will be considered.

This routine computes the time delay between alpha or

beta transitions of two flagged elements. The parameters of

interest in the statistical analysis are entered on the typewi_iter

keyboard. The sequence of operations is as follows:

(a) The typewriter types out "ST", after which the

user types in the lowest value of time which is of

interest, and terminates by a carriage return.

(b) The typewriter types out "INT" after which the

user types in the interval widths of his analysis,

again termination is by a carriage return.

(c) The typewriter types out "NO" after which the

user types in the number of the intervals in (b)

which are required, termination is by carriage return.

(d) The typewriter types out "EV" after which the

user types in the number of times he wishes the

circuit to be simulated in order to gather statistics.

Termination is by carriage return.

i
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(e) The typewriter types out "FLAG" and"lst" after

which the user types the nature of the transient (a or

b) and the identifying number of the circuit element.

The typewriter prints out "2nd" and the user presents

the nature and identification of the second transient.

(f) A second carriage return begins the simulation,

or if the sorter is to be utilized SORT is typed out

and the sort is made as described in that section.

As a specific example, assume the user wishes to

obtain a statistical analysis on the time delay in a system between

an alpha transition on input signal P2 and a Beta transition on

element G12. He then wishes to obtain information on the effect

of sorting. Assume additionally that the user has no advance

information on the spread of delays.

The user makes a crude estimate of the delay. For

purposes of illustration, he guesses that the delay will lie between

0 and 500. To improve his estimate he divides this range into 50

intervals of 10 units each, and takes a sample of 300 simulations.

When the program has been loaded,

take place at the ASR-33 keyboard.

matically typed out by the program,

the following dialogue would

Underlined symbols are auto-

the others are entered by the

I
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user:

S_TT0(cr.)

IN__T 10(cr.)

NO 50 (cr.)

E___V300 (cr.)

FLAG

Is____tAP2 (cr.)

2nd BG12 (cr.)

SORT (cr.)

whe re

ST means the starting point of delay- interval.

INT means the width of sub-intervals.

NO means the number of sub-intervals .

EV means the number of simulations .

(cr.) means a type in of a carriage return.

FLAG indicates the flagging routine has been called.

SORT indicates the sorter routine has been called.

Following this, the machine performs the simulation and

types out 50 lines in two columns. Each line represents the con-

tents of one of the intervals. The first column is the actual

contents, the second column represents the accumulation of all the

I



IO

i

I
I

I

I
I

I
I

I
I
I

I

I
I

I
I

I

169

preceding sub-intervals.

An examination of these results might yield that no

delays in the 300 trials occurred less than 120 units or more than

320 units. If now desired a larger sample could be taken and the

estimate improved. Now the dialogue might look like:

ST 100 (cr.)

INT 5 (cr.)

NO 50 (cr.)

EV 1000 (cr.)

F LAG

1s..__t APZ (cr.)

Zn__idBG 12 (cr.)

SORT (cr.)

Note that the interval of examination is from 100 to 350,

in 50 sub-intervals of 5. If desired this process of adding preci-

sion to the statistics obtained could be continued as long as nece-

ssary. When the effect of sorting is to be tested, the elements to

be sorted are entered after the machine type out of SORT. Since

sorting lowers the variance, the same valuesof ST, INT, and NO

as were used in the last unsorted simulations can be safely used.

!
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As an example consider:

ST 110 (cr.)

INT 3 (cr.)

NO 70 (cr.)

EV I0000 (cr.)

F LAG

Ist APZ (cr)

2nd BGI2 (cr.)

SORT

04 + (cr.)

sz - (cr.)

$4 + (cr.)

G7 - (cr.)

(cr.)

There is always the possibility that the second transient

may occur before the first one in the system under test. Follow-

ing the listing previously discussed, the word MISS is typed out

followed by the number of times transients occurred in inverse

order during the simulation.
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The flow chart for the time difference routine is con-

tained in Figures 5.6 through 5.8. The first part shown in Figure

5.6 consists of the initialization of some memory locations and the

acceptance of data from the keyboard. The flow chart is almost

self explanatory; however, some mnemonic definitions are in order:

T2 is a control word which causes only two flagged

inputs to be accepted.

T is the initial address where the label of the

transients are stored alternately with their signs.

OUCH is the register which counts the MISSes

discussed above.

1 or.2 is a control word which is used in the deter-

mination of the order of the transients.

The end result of this portion of the routine is the

clearing of a block of memory (RANGE) immediately following the

program. The size of this block of memory is equal to the number

of sub-intervals (NOV) in the analysis. Additionally the element

type and number of the first transient are stored in T + 1 with its

sign in T + 2. The element type and number of the second transient
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ENTRY FROM FIG. 4.23

I TYPE "ST" _____TMPI _- NOV

I

I

I

I
I
I
I

I
I

I

I

CALL DT BI

STV _- ACC*

TYPE "INT"

CALL DT BI

INTV 4- ACC*

TYPE "NO"

CALL DT BI

NOV 4- IACC*

TYPE "EV"

CALL DT BI

EVV*- -ACC*

T2+ -2

TI_T+I

OUCH _- 0

1 or2_-0

TYPE "FLAG"*

TYPE "I st"*

i__
-- CALL FLAG

TMP2 4-
(TMP2)2-6, 16

(TI)_-TMPZ
TI4- TI + 1

(T 1 ) 4- SIGN

T2 + T2 + I

TI_ T1 + 1

T2 : 0_ >

ITYPE "2ND"

YES

INDEX q- 0

--_(RANGE+INDEX).0 i
NO

_-< TMPI = 0

TMPI _- TMPI + I

INDEX_- INDEX + 1

'777 q- ADDRESS OWW

CALL DINS

_EXIT

Note. DTBI is a decimal

to binary converter which

operates on the ASCII

code for the ASR-33 type-

writer. Its flow chart is

between A and A' in Figure

5.4.

;:-'Indicates an automatic

carriage return and like

feed.

FLAG (See Fig. 5.4)

DINS (See Fig. 5.1)

I

I
Figure 5.6 Statistical Analyzer (Part I)

I

I
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ENTRY FROM SCNT (Fig. 4.28)

YES

< _orZ:0?,> _O
IA_"__-_,_,_I

4,
Y_s< ACe:T+I._>_

I

_< Ace; >-___YEs__ : T+3 --

E3

I OUCH4- OUCH+ I ]EVV+- EVV + 2

.

[___ B PartII

(Fig.'5.8)

TST 1 4- T + 2

ACC._- (MATL)8

-_ TSTI ?

EXIT

2P1 4- NOP
1 or g4- 1 or 2 + 1

ACC _- TIME

_ uP< ss3 ,,>D°w_
CALL INPT

I
TMP54- ACC I

EXIT

INPT (See Figure 5.8)

ACC

E3

4- (MATL)2_6
,,, '_9'1

ACC = T + 3> YES

4, .YES

ACC = T + I?_-_-

EXIT

OWW '_

_.s< _ _-_o_._
TST24- T + 4

ACC4- (MATL)8

O-_E4

I
------_EXIT

_ ss4._ >Down
L INPT _J

ACG _ _ ".....
,TMPI 4- ACC -Ts_P5 1

< TMP_<o > z_sI

TYPE "ST"

_-IALT !

NO

A Part III Figure 5.8

Figure 5.7 Statistical Analyzer (Part II)

!
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I A (Fi 5.7) INPT

, , +!ov ,
ACC + (TMP9)

-_TMPI4- TMPI - INTV J ACCj+84- ACC. J
ACC + TIME - ACC

_m<T _ >NoMPI< 0?

+

I

ADDR 4- INDEX + RNGE

(ADDR)4- 1 + (ADDR) I

EVV4- EVV + I |

B(Fig.+ 7)r..,+ 5.

YES <EVV : 0? _-_

I

CALL REINCALL DINS

I

I

I

I

I

I

I

I

I

I

I

I

I

EXIT

E_
RETURN CARRIAGE

FE E D LINE

TYPE "E4"

HALT

RE T URN CARRIAGE

FEED LINE

TYPE "EXTRA"

TYPE "FLAG"

HALT

GO (Fig. 4. Z4)

I INDEX e NOV
TMPI 4- 0 i

i I
ACC 4- OUCH ....

T YPE "MISS"

CALL BTDI

REIN (See Fig.. 4.35)

DINS (See Fig. 5.1)

L
F

ACC4- RNGE + INDEX

CALL BTDI

TMPIe- TMPI + RNGE

TMPI4- TMPI + INDEI_

CALL BTDI

INDEX4- INDEX + 1

+
. INDEX = 0 \

YES

Figure 5.8 Statistical Analyzer (Part 111)

I

Q-

NO

I
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are stored in T + 3 while its sign is held in T + 4.

The second portion, in Figures 5.7 and 5.8, shows the

actual statistical analyzer in flow chart. Upon entry into the

routine, the contents of location 10R2 are inspected. If it is

even (i.e., bit 16=0) the processor has not processed a first

transient as yet. Assume this is the case. The matrix line label

word is stripped and compared in turn with the contents of T + 1

and T + 3.

If the stripped label agrees with the contents of T + 3,

it means the transient expected second has arrived first. OUCH

and EVV are incremented. EVV is tested to determine if the last

event of the simulation has transpired. If not, the system is

reinitialized, new delays chosen for the elements, and another

simulation event occurs. If this were the last event the typewriter

lists the analysis (this will be discussed in detail later).

If the stripped label is identical to the contents of T + I,

then the contents of T + Z are inserted into TSTI. It will be

recalled that T + 2 contained an SNZ if the first transient were

positive going, and an SEE is it were negative going. The status

bit of the line label of the flagged element is subjected to the
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TEST. If the status bit is 1 in the case of positive going transient

or 0 in the case of a negative going transient processing continues

otherwise an exit to the calling program is made. Further pro-

cessing consists in the insertion of a NOP into control location

2P1, the transfer of the contents of TIME into TMP5, and the

incrementation of 10R2 by 1 before an exit to the calling program.

If the stripped label did not agree with either T + 1 or

T + 3, an exit to E3 is made. This causes EXTRA FLAG to be

typed out and a halt executed,

If the contents of 1 or2 were odd upon entry it means the

second transient is expected. In this case, the stripped label is

compared with T + 1 and T + 3.

is made to the main program.

called. If it agrees with T + 3,

If it agrees with T + 1 a return

If it agrees with neither E3 is

it is indeed the expected second

transient and undergoes further processing.

The matrix line label is checked for transient polarity

using the contents of T + 4 as the test instruction (indicated as

TST2 on the flow chart). If the polai_ity of the transient is correct

1 c_ 2 is incremented and the time difference is computed by sub-

tracting TMP5 from TIME. The value of STV is subtracted from

I
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the time difference and the result checked for a positive sign.

not, a halt is made after a type out of ST to indicate that the

value of ST was poorly chosen. Operation can be continued if

desired by pressing the start button.

If

However, if result of subtraction STV from the time

difference is positive, the value of INTV is repeatedly subtracted

from the result until the result goes negative. At each subtraction,

the index register is incremented by 1, so that the proper interval

is indicated by value of the index register. A 1 is then added into

the address specified by RANGE plus INDEX, and EVV is incre-

mented by 1. If this did not constitute the last event, the system

is reinitialized, new delays are chosen, and a new simulation is

begun.

The last event detection (EVV=0) causes the contents of

each address in RANGE to be printed out along with the accumula-

tions of preceding intervals. When all the sub-intervals are typed

out, the contents of OUCH are printed following the symbols MISS,

after which the machine halts, the analysis is completed.

A user's option has also been added. This option

enables the user to select for measurement the time at which either

!
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the beginning or the end of the propagation delay occurs. If sense

switch number three is set (placed in the UP position) the end of

the propagation delay on the first transient will be used, otherwise

the start of the propagation delay. Sense switch four plays a

similar role with respect to the second transient. This option

allows the use of dummy gates to make otherwise difficult measure-

ments. Its use is illustrated in the second example of Chapter VI.

It should be noted that the option applies only to gates and does

apply to storage elements.
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CHAPTER VI

ILLUSTRATIVE EXAMPLES

6.1 General

In order to demonstrate the effectiveness of the statis-

tical analysis and the Monte Carlo simulation, several examples

were run.

6.2 Adder Design

Figure 6. I shows two possible full adder circuits using

18
NOR circuits, taken from Ledley These are not chosen to

illustrate optimum adder design but rather to show the influence

of the statistical analysis on a design decision.

The circuit shown in Figure 6. l(a) is a standard two

level NOR implementation. The alternate circuit in Figure 6. l(b)

has been obtained by noting that the Boolean expression for C-

contains many terms common to those in the expression for S.

It uses one less NOR circuit and requires the carry output to pass

through three levels of logic.

If we consider the NOR gates in question to have a

uniform spread in delays from 20 to 50 time units, a worst case

analysis timing allowance indicates that the elimination of one

179
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circuit is obtained at a price of a 50% increase in propagation

delay.

A statistical analysis of the response of three gates in

sequence using 40, 000 simulations, however, indicates that the

probability that the delay will exceed an increase of 40% is less

-4
than 10

The designer may then investigate the effects of compo-

nent sorting. The eight circuits of Figure 6.1(b) are sorted as

follows. Circuits GI, G2, G3, and G4 contain the upper sort or

those drawn from the sort above the mean; while G5, G6, G7,

and filled with components drawn from the lower sort. The delay

densities for the carry output obtained by simulation are shown

in Figure 6.2, where it is compared with the results for the adder

of Figure 6.1(a) unsorted. Note that the predicted 50% increase

is now less than 200/0.

Figure 6.3 shows the comparison of the carry output of

the three-level adder for the sorted and unsorted case.

Finally, Figure 6.4 shows the two-level adder unsorted

compared with a sort on the two-level adder. Elements G1, G8,

Gg, and G7 come from the lower sort, while G2, G3, G5, and G6
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INTERVAL OCC UPANCY
i

4000 I//I/I
Sorted

IX_XNkt
Unsorted

3000

2000

1000

40

Figure 6.2

70 100

DE LAY -

Comparison of C Outputs Between Two Level Circuit

(Unsorted) and Three Level Circuit (Sorted).
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4000

3000
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i000

60

Figure 6.3
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Sorted

v///A
Uns orte d

90 120

Comparison of Carry Outputs 3_Ith and Without

Sorting for the Three Level Circuit
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INTERVAL

OCCUPANCY

5000

V//A
Sorted

tx\\\l
Unsorted

3000

Z000

40 70 I00

DELAY +

Figure 6.4 Effect of Sorting on the Two Level Adder
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come from the upper sort; 04 is unsorted.

The designer can now make a decision between the two

adders based on the economics of component price, cost of sortin_

and cost of time delay using information not available under worst

case conditions.

The time necessary to compile the statistical informa-

tion was about 15 minutes most of which was consumed by system

and preparation, and by typewriter print out of data.

6.3 Feedback Counter Ripple Time

Figure 6.5 shows a decade of a decrementing binary

coded decimal counter. The counting sequence is shown below in

the same figure. Stable states of the counter are underlined while

transitory states which occur between legitimate counts are not

underlined. Two important considerations in counter design are

the time taken to propagate a carry and the maximum time

elapsing between stable states. The carry delay is the time

between the arrival of a pulse to be counted (when the tounter is

at all zeroes) and the positive going transition on $4. A glance at

the system counting sequence shows that maximum time between

legal counts also occurs at this point in the counting sequence.

I
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Counting Sequence

9 1001

8 1000

1001

1011

1111

7 0111

6 0110

0111

5 0101

4 0100

0101

0 l'l 1

3 0011

2 00 i 0

0011

1 0001

0 0000

0001

0011

0111

111 l

1011 or I 101

9 1 0 0 1

G1
(Dummy Gate)

Figure 6.5 Decrementing Decimal Counter

INPUT

I
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Note that there are five intermediate states in the 0 to 9 transition

and a maximum of three intermediate states elsewhere.

The statistical measurements were taken using the

"Time Between Transients Routine" discussed previously (in

Section 5.5). A dummy gate, G1, was connected to recognize the

count of 9, while the counter was initially set to all zeroes. The

routine was required to measure the time between positive transi-

tion on the output S1 and the time the input on G1 initiated a posi-

tive going transition on its output.

It was not obvious where the delay time was located, so

a trial run of 300 simulations was made using the delay range from

0 to 500, divided into 50 sub-intervals. These results causes a

second trial of 500 events to be attempted with the delay range

starting at 100 and using 50 sub-intervals of 5 each to extend the

range to 350 units. These results indicateda further narrowing

of the range was possible. A run of 1, 000 events was made,

starting at 130 and using 50 sub-intervals of 3 each. This trial

had results which indicated that further narrowing of the range was

not desirable. This process of "tying down" the range of delays

occuppied approximately one minute of computer time. However,

the relatively slow speed of the ASR-33 print - out caused the total

I
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time involved to be approximately I0 minutes.

It was decided to make two runs of I0, 000 events each.

The first run would have S element switching delays drawn from

an unsorted uniform density function between 20 and 50. In the

second run, $3 andSZ were drawn from the lower sort while S1

and $4 were drawn from the upper sort. The choice of elements

into sorts is rather easy this time since $2 and $3 are switched

twice in the transition from 0 to 9. The carry is unaffected by

the choice since each of the S elements switch once in producing

the carry and, as it was indicated in Chapter I, the order of

insertion of the sorted elements is immatrial.

It is in order, at this point, to note that the statistical

data on the transfer from 0 to 9 could not be obtained by standard

convolution techniques since the time to go from IIii to i001

depends on the longest switching time between $3 and $4. This is

analogous to the AND gate discussed in Chapter III.

The statistics on the delay between 0 and 9 are shown

in Figure 6.6 for the sorted and the unsorted case. The designer

can then make a decision as to the economic desireability of the

sorting. Note that the mean is lowered by the act of sorting here.
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This is due to the fact that, as previously mentioned, the delays

due to $2 and $3 occur twice while those due to S1 and $4 occur

onc e.

It is worth noting here that the correlation between the

resetting speed (R input delay) and toggling speed (T input delay)

was handled by choosing them both from the same sort of the

delay statistics. It could well be argued that for some physical

RST elements, a more realistic model would have been to use the

same delay for each element. The effect is to broaden slightly

the delay density function of the sorted elements.

The results of the statistical analysis on the carry out-

put are shown in Figure 6.7. As would have been expected from

the material of Chapter II, the mean delay stays the same, while

the range of delays is shrunk to one-half.

6.4 Race Detection

Many times when building digital systems from micro-

circuit components it is convenient to use the inherent delays in

the elements to ensure a proper sequencing of signals at another

portion of the system. As an example consider chains A and B

of Figure 6.8. Chain A contains 6 elements while chain B contains

!
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only 4. It is hoped by the designer that the two extra element

delays of chain A will ensure that the signal at the output of chain

A will always arrive after the output signal of chain B.

A worst case analysis using the minimum delays in

chain A and the maximum delays in chain B indicates that overlap

is possible. The designer would like the answer to two questions:

(a) Is the probability that the output of chain A

will arrive first significant?

(b) Can the sorting operation be used to

improve things ?

The first question is answered by statistically analyzing

the time difference between the output of chain A and the output of

chain B. The results are shown in Figure 6.9. Also shown in

Figure 6.9 are the results for the following sorts:

(a) Chain A

Upper Sort G1, G3, S1

Lower Sort G2, G4, $2
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RELATIVE INTERVAL OCCUPANCY

1000

500

0

Figure 6.9

Sorted

Unsorted

DELAY (6 Units/Division)

Delay From aG8 to aG4 10, 000 Trials

The aG4 Occurred first 14 Times

Without sorting, never with sorting.

Total Computational Time 7:20
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Chain B

Upper Sort GS, G7

Lower Sort G6, G8

Note that the sole act of sorting the components has

eliminated the possibility of the output of chain A arriving ahead

of the output of chain B.

This example is rather artificial since no possibility

exists for sorting elements such that the upper sorts go into chain

A while the lower sorts of the same element type go into chain B.

This latter sort in addition to changing the race possibility would

also change the mean delay in each chain, lowering it is chain B

and raising it in chain A

Figure 6. I0 shows the resultsofarnzre practical case.

The two chains analyzed above are used to create a pulse by

setting and resetting an RST flip-flop. A flip-flop was included in

the simulation and the statistics were gathered on the width of the

pulse generated.

It will be recalled that the ground rules for the RST

flip-flop cause no pulse to be generated if the resetting transient
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RELATIVE INTERVAL OCCUPANCY

Sorted

Unsorted

Width (6 Units/Division)

Figure 6.10 Width of $3 Output Pulses
10, 000 Trials

No Pulse Occurred 70 Times with

Sorting, 867 Times Without

Sorting

Total Computational Time 8:40
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arrives during the propagation time of the setting transient. In

this case then the outputs of chains A and B must be separated

in time by an ammount at least equal to the propagation delay of

the flip-flop which is, itself, a random variable.

To implement this, the no output condition of the simula-

tion was caused to make an entry into the MISS counter, by setting

the address of location OWW into control word '777.

In this more practical case, the results shown in

Figure 6. I0 indicate that sorting does not eliminate races but

does reduce their incidence by a factor of more than ten for the

example chosen. In this example the delays were again assumed

uniform as follows:

AND 15 to 35

OR 15 to 35

NAND 20 to 50

NOR 20 to 50

RS 20 to 50
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CHAPTER VII

SIMULATION SPEED

7.1 General

There are many factors which influence the speed with

which statistical analyses can be obtained. For this reason, a

high degree of accuracy in predicting speed is not possible;

however, many qualitative statements can be made.

The factors influencing speed can be grouped into three

categories:

(a)

(b)

(c)

the statistical processing

the delay insertion and reinitialization

the simulation programs.

Note that the time taken to prepare the matrix will not

be considered in detail. The speed here is limited by the speed

of the card reader and can be obtained by dividing the number of

cards, T throughE, by the reading rate of 100 cards per minute.

Nor will the time taken to enter data at the ASR-33

keyboard be considered since this time is primarily determined by

the reaction time of the user and only secondarily by the response

time of the ASR-33.

198



|O

I

I
I

I

I
I

I
I

I
I

I

I
I

I

I
I

199

7.2 Statistical Processing

Quite clearly, the statistical processing time will

depend on the nature of the statistics involved in the system. For

purposes of illustration here, the "time between transients"

routine described in Chapter VI wii1 be discussed.

tational times of interest are listed in Table 7.t.

which stands out is that the statistical analysis time is quite

largely determined by the mean number of intervals traversed

before the proper interval for the measurement is found. The

mean number of intervals tranersed will depend on the nature of

the statistics. Consider, for example, the three cases shown in

Figure 7.1. Case (a) is a symmetric density function, while (b)

and (c) are iopsided to the right and left respectively and have

means which are correspondingly higher and lower than the mean

of case (a).

Various compu-

One fact

If we make the following assumptions, a numericaI

exampie can be posed.

(1) No entries into MISS .

(2) First transient is an output and has the right sign

the first time.

I
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Table 7_.i .

Computational Times for the Time Between Transients Processor

A. Time to process an entry into MISS 56. I _ sec to 57.8_ sec

B. Time to process the first transient

I) if wrong sign 42.5 _ sec

2) output transient, right sign 66.3 _ sec

3) input transient, right sign 98.6 _ sec

C. Times involved in second transient processing

I) if first transient signal exit

2) if wrong sign

3) output transient,

4) input transient,

28.9_sec to 30.6 _sec

45.9 _ sec

right s_gn 125.8 _ sec + 28.9(X-l)_sec

right sign158.1_sec+28.9(X-l) _sec

',_ X is the number of the interval into which

the measurement falls.
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Figure 7.1 Assumed Output Statistics
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(B) The next signal processed is the second transient,

an input transient, with the right time.

(4) The range of delays is broken into fifty intervals.

(5) The total number of simulations is 10, 000.

Referring to Figure 7::1 , the total time involved in the

statistical analysis, for case (a) is 9.18 seconds. For case (b) it

is 1P.94 seconds, while for case (c) it is only 6.00 secoSds.

7.3 Delay Insertion

Once again, the delay insertion time is governed by the

nature of the statistics, only this time it is the statistics of delays

of the elements. Computational times of interest are shown in

Table 7:.2 Here a salient factor is the effect of the position in

the delay table of the element type as discussed in part D. It

bears out the earlier statement that time can be saved in process-

ing if the most common elements in the system are placed early

in the delay table. Recall that the order of placement of element

types in the delay table is at the option of the user.

To obtain an order of magnitude.for the time involved

a complex digital sub-system, consider the following assumptions:

I
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Table 7 ;i_

Computational Times for the Delay Insertion Routine

A. Random number generator

B °

Co

D°

E*

Generation of a number to a uniform

density function (including A)

Generation of a number to a

triangular density function

(including A)

Time required to generate and insert
a delay ;:_"governed by a uniform

density function, where E' is the

position of the element type in the

delay table.

Additional Time required for sorting

1. Elements not in the sort

2. Elements in the upper sort

3. Elements in the lower sort

where E" is the position of the

element in the sorting table.

73.4 p_sec

126.7 _ sec

267.0 _ sec

226.4+28.9(E'-l)_sec

75.0+28.0i N" _ sec

95.4+28.0(E"-I)_ sec

85.6+28.0(E"-I)_ sec

The first matrix lines require 8.5 _ sec

additional, and the last line 3.4 _ sec less.

i
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(1) The circuit contains 5 signals,

(2)

20 S elements.

20 G elements and

Each S element requires two matrix lines and the

two inputs are assumed independent.

(3) Six elements (4 G and 2S) are to be sorted.

(4)

(s)

The delays in question are governed by a uniform

density function,

There are five element types (4G and 1S) used

in the system. The S element is the first entry

in the delay table and for an S element E'=2 on

the average. Also the gates types are intelli-

gently placed in the table so that for a gate

E'=5. S elements are also placed first in sort-

ing table.

(6) There are to be 10, 000 realizations of the

circuit.

The total time taken then for insertion of delay is

approximately 170 seconds, about two-thirds of which is occupied
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with processing the S elements. Thus an increase in the number

of S elements has about twice the effect on delay insertion time as

a numerically equal increase in the number of gates.

It is noticed that the use of sorting requires 88 additional

seconds over the 148 seconds required for delay insertion with no

sorting.

In addition, note that P lines are not acted on by the

delay insertion routine. This fact should discourage the use of

flip-flops and gates which provide fixed levels during the time of

the system transient under study. These elements should be

replaced by fixed level P signal instead.

7.4 Reinitialization

Each time a new event in the simulation is begun, the

circuit must be returned to its initial conditions. Computational

times of interest are shown in Table 7L 3. Note that an S

element with, say, two matrix lines requires 241 micro seconds

which is slightly more than double the time required for reinitial-

ization of a_G or P element.

I
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Table 7.3

Computational Times for the Reinitializer

A. Entry, initialization of constants,

and exiting 98.6 _ sec

B. P line processing time* 112.5 vsec

Co G line processing time';-"

I) No change required

2) Change required (average)

D. S element processing time

1) Test for proper bit (R or S)

fails

z)

3)

Initialization and exit

S line processing (per line)

64.6 M sec

88.0 _ sec

44.2 _ sec

E. Time to move to next word of INIT 11.9 _sec

*Subtract 6.8 _ sec for the first line of the type.

I
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If the as sumption that one-half of the G line require

changes in the reinitialization process, is added to the assumptions

previously listed, the total reinitialization time for I0, 000 realiza-

tions is approximately 73 seconds. Here again the effect of adding

an S element causes twice the increase in processing time as does

the addition of G element.

7.5

three sub-programs.

in separate sections.

The Simulation Program

The simulation program may be further divided into

Subroutines SCAC and SCNT will be treated

The short control program shown in

Figure 4.24 is the third portion and it will be discussed here.

The initialization of TIME. CLKW, and the CLK register con-

sumes 44.2 micro seconds plus 22.1 micro seconds for each

additional word in CLK. The time for the cycling between SCAC

and SCNT is 23_ 8 micro seconds plus 22.1 micro seconds for each

additional word of CLK which must be examined. Note that the

initialization takes place once each simulation, while the cycling

takes place once each simulation plus once each transient in the

system.
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If an additional assumption that all elements undergo

one and only one transient is added to the previous assumptions,

then the time consumed in this portion of the simulation program

is about 12. seconds. It was also assumed that at least one P signal

was periodic so that the cycling routine required the examination of

only a single word of CLK.

7.6

Tables VII-4 through VII-8.

in the first of these tables.

Subroutine SCNT

Some computational times of interest are shown in

The search portion times are shown

This portion is utilized on each system

transient. Its contribution to total processing time can be

estimated by adding to the previous assumptions the restriction

that the transients occur singly and that each transient affects 1.2

other circuits in the system. This is not to be confused with fan-

out since we are only interested in connections within the system

being studied. It will also be useful later on to assume that the

extra 0.2 interconnections are distributed in the same proportion

as are the total system elements. In this case, for 10, 000

realizations, the search portion of SCNT consumes 24 seconds for

eachtrahsient or a total of 17.2 minutes. Again the S elements

proved twice as slow to process as the G elements. Recall that

I
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Table 71. 4

Computational Times of Interest in Subroutine SCNT

(Scanning portion)

A. Entrance, Initialization, and Exit

B*

C °

D.

Processing a word of TRN with no l's

Processing a word of TRN with at

least one 1

I) processing the word itself

2) processing matrix line with

no active input

3) processing matrix line with

an active input (up to call to

SCAT)

Subroutine SCAT, regardless of nature

of the matrix line element

30.6 _ sec

35.7 _ sec

37.4 _ sec

37.4 _ sec

64.6 _ sec

47.9 _ sec

::=Subtract20.4 _ sec for the last word.
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Table 715

Computational Times of Interest in Subroutine SCNT

(ANDr outine s).

Let W C be the number of computer words in CLK scanned in ERSE.

W T be the number of computer words in CURR.

W !

T
be the number of the word in CURR where the first

discrepancy between MATR and CURR is found.

In these routines the times are not fixed so that an average

processing time is given. In all cases the actual time will differ

by no more_than 6.8 _ sec.

A. Time to process an input transient which maintains the circuit

in the ON state

46.8 + 39.1 (W T - i) _sec

B. Time to process an input transient which makes the circuit to

go from the OFF-GOINGS state to the ON state

17 0. 8+20. 4(Wc-I)+ 39. I(WT-I)_ s e c

C. Time taken to process a signal which causes the circuit to go

from the OFF state into the ON-GOING state

176.8+20.4(Wc-I)+39. l(WT-l)_sec

D. Time taken to process a signal which causes the circuit to go

from the ON state to the OFF-GOING state

z03.8+zo.4(Wc-i)+39.l(W'r-l)_ec

E. Time taken to process a signal which causes the circuit to go

from the ON-GOING state to the OFF state

186.o+zo.4(Wc-i)+39.l(W'r-l)_ec

F. Time taken to process a signal which maintains the circuit in

the OFF state

46.8 + 39.1 (W T " 1) _sec

I
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Table 7.6

Computational Times of Interest in Subroutine SCNT

(OR-NOR routines)

Let WC" be the number of the first word in CURR where MATR

and CURR have at least one bit in common.

l

W C, W T, W C be as defined in Table VII-5

Again average processing times are listed with actual times

always lying within :£ 6.8 _ sec

A. Time to process an input signal which maintains a circuit in

the ON state

41.7 + 32.1 --(WT"-I ) _ sec

B. Time to process an input transient which causes the circuit to

change from the OFF state to the ON-GOING state

It

188.4+zo.4(Wc-1)+3z.l(WT -11_sec

C. Time to process an input transient which causes the circuit to

go from the OFF-GOING state to the ON state

f!

183.6 +20.4(Wc-1)+ 32. I(W T -1)psec

D. Time taken to process an input transient which causes the

circuit to go from the ON-GOING state to the OFF state

169.9+ 20.4(Wc-1)+ 32. I(WT-1)_s e c

E. Time to process an input transient which causes the circuit to

go from the ON state to the OFF-GOING state

158.3+Z0.4(Wc-1 )+32. l(WT-l)psec

F. Time to process an input transient which causes the circuit to

be maintained in the OFF state

41.7 + 32.1 (W T-I) _ sec

I
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Table 7,7

Computational Times of Interest in Subroutine SCNT

(RST Subroutines)

Ao

B.

Co

D°

Time consumed to examine a wrong

polarity transient 28.9 _ sec

Time to process a transient on the R

input if the device is already reset 57.1 _ sec

Time to process a transient on the S

input if the device is already set 58.8 _ sec

Initial processing before search for

fir st matrix line

l) R input 89.1 _ sec

2) S input 90.4 _ sec

3) T input 87.0 _ sec

E. Determination of first line time

i) Input is in first matrix line

2) Input is in second matrix line

3) Input is in third matrix line

35.7 _ sec

59.5 _ sec

83.3 _ sec

F. Change of state time, first line

1) Element previously in steady state

127.5+20.4(Wc-I)_ sec

Z) Element previously in transient state

139.4+zo.4(Wc-l)_sec

G. Change of label time

I) Element contains one matrix line

2) Element contains two matrix lines

3) Element contains three matrix lines

H. Exit Time

56.1 _ sec

96.9 _ sec

137.7 _ sec

13.6 _ sec

I
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Table 7.8

Computational Times of Interest in Subroutine SCNT

(JK Subroutines)

A. Time to exit if status, polarity of transient, are wrong

for particular input

1) Positive transient on J, K or G input 52.7 _sec

2) Positive transient on PJ, status =1 64.6 _ sec

3) Positive transient on PK, status =0 6Z.9 _ sec

4) Negative transient on J, status = 0 54.4 _ sec

5) Negative transient onK, status =1 62.9 _sec

6) Negative transient on PJ, status = 1 66.3 _sec

7) Negative transient on PK, status = 0 71.4 _sec

B. Initial processing before search for first matrix line

1)
z)
3)
4)
5)
6)
7)

Positive transient,

Positive transient,

Negative transient,

Negative transient,

Negative transient,

Negative transient,

Negative transient,

PJ input 10Z.0 _ sec

PK input 98.6 _ sec

J input 91.8 _ sec

I< input I00.3 _ sec

PJ input 107.1 _ sec

PK input i12.1 _sec

C input i13:.8 _sec

C. Time required to determine first matrix line

i) First line active

2) Second line active

3) Third line active

4) Fourth line active

5) Fifth line active

40.8 _ sec

66.3 _ sec

97.8 _ sec

116.3 _sec

141.8 _ sec

T able VII- 8 continue d
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Table 7_18 continued

D. Time required to build the input status word

1) Unconnected input

Z) Connected input I entry

0 entry

(Where W is the number of the

inter connection wo r d e ontaining

the input. )

27.2 _ sec

71.4 + 27.2(W-I)_ sec

81.6 + 27.2(W-I)_ sec

E. Comparison of input status word

1) Check on first pass

2) Check on second pass

3) Failure to match

F. Change of state time

30.6 _ sec

59.5 _ sec

51.0 _sec

G. Change of label time

Same as Table 7.7F.

H°

1) Element contains one matrix line

2) Element contains two matrix lines

3) Element contains three matrix lines

4) Element contains four matrix lines

5) Element contains five matrix lines

56.1 _ sec

96.9 _ sec

137.7 _ sec

178.6 _ sec

219.5 _ sec

Exit time 13.6 _sec
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this computation did not include the element processing.

Table-7.5: shows some computational times for the

AND subroutines. It should be noted that routine also serves the

NAND elements with no difference in processing times. Assuming

that half of the G elements in the system are AND or NAND

elements and that the state changes are equally divided between

ON-GOING and OFF-GOING, the AND-NAND subroutines contri-

bute an additional 40 seconds.

Table 7.16 shows some computational times involved in

the OR-NOR subroutines. If it is required that the OR-NOR

circuits experience equally ON-GOING and OFF-GOING state

changes, then the contribution of the OR-NOR subroutines to the

total processing time is about 35 seconds.

Computational times pertinent to the RST element pro-

cessor are shown in Table 7.7 . . It will be noted that the time to

process an RST element depends on which input is activated, and

how many matrix lines are used to specify the element. An order

of magnitude may be obtained by assuming 8 of the S elements have

only the T input connected, another 8 have the R and S inputs

connected with triggering equally likely between them, while 4

I
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have all the inputs connected with the transient active on the T

input. It will also be assumed that all S elements are in the

steady state when an input transient appears. The total time

consumed is approximately 90 seconds.

It is worth noting that approximately 25% of the pro-

cessing time for the AND-NAND, OR-NOR, and RST elements

was involved in loading the CLK register.

Pertinent timing information for the JK processor is

contained in Table 71.8 If a relatively crude estimate of the

difference between RST and JK processing times can be obtained

by assuming that the twenty flip-flops were JK elements, with 15

using only three inputs while 5 use five inputs. This would result

in an increase over RST processing time of approximately 96

seconds .

7.7 Subroutine SCAC

The processing times for subroutine SCAC are extremely

varied depending on circumstance, so that any estimate here will

involve greater approximations than those made heretofore. Some

processing times of interest are indicated in Table 7.9 A very

crude estimate of the processing time for the system previously
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C°

Do

m o

F °

G.

Table 7.9

Computational Times of Interest for Subroutine SCAC

Initialization of Routine 34.0 V sec

Exit to Line Processor

i) IfAl = 1

2) Time for normalizer (each bit)

N C is number of shifts required

3) Exit from normalize loop

4) Change word in CLK

18.7 _ sec

37.7+0.34Nc_ sec

10.5 _sec

28.9 _ sec

Exit from SCAC including modification of CURR

57.8+35.7(WT-1)_ sec

Time to modify clock increment if the clock

has not gone to zero (ave) 55.4 _ sec

If clock has gone to zero, the time to
determine the nature of element in the line

1) Gate element 40.8 _ sec

2) P element 47.6 _ sec

3) S element 45.9 _ sec

Time to process a G line 185.3+40.8(Wc-I)_ sec

Time to process an S element where L

is the number of matrix lines required

for the S element 408.4 + 81.6 .(W C -1)+37.4(L-_sec

H. Time to process a P line

1) if the entire clock word is not zero

2) if a level changes

3) if single pulse, leading edge

4) if single pulse, trailing edge

5) periodic pulse, (average)

23.8 _ sec

198.9+40.8(Wc-1)_ sec

185.3+20.4(Wc-1)_ sec

198.9+40.8(Wc-I)_. sec

187. o+zo.4(Wc-1)_ sec
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used as an example yield a total time of nine and three quarter

minutes. Additional assumptions were. The contents of CLK

were presumed to contain l0 ones on the average, but only one of

these represented a transient, the others resulted in comparison

with the clock decrement word.

It should be stressed, that with the assumptions made,

the results are only crude estimates. They do, however, allow

order of magnitude estimates.

7.8 Processing Time of the Example.

The total time for processing the circuit of the example

through 10, 000 simulations would be about 30 minutes or about

180 micro seconds per simulation. About one half the total time

was used in the processing of subroutine SCNT Of this time about

5/8 was consumed evaluating words in the input matrix which did

not contain inputs with transients on them.

One is tempted to consider the preparation of a routine

which forms an output matrix from the information in the input

matrix, and to use these matrix lines during SCNT in an identical

manner to the way CLK is used during SCAT. However, careful

consideration shows that no saving in time is obtained if each

I
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element undergoes but a single transient in the simulation, and

there are only a small number of elements in the system under

consideration. The idea would have merit, however, in those

cases where a large system is to be simulated, or when a small

system is to be simulated over several cycles of operation, i.e.,

the entire counting sequence of a counter. If such tasks are to be

encountered to any large degree, it is the opinion of this writer

that the use of an output matrix be thoroughly investigated.
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C HA P T E R VIII

RECOMMENDATIONS FOR FUTURE WORK

There are two major areas in which more work could be

profitably undertaken; the expansion of the simulator, and a study

of the effects of packaging correlation on element statistics.

The simulator as shown in this thesis could be suitably

modified to serve as a synthesizer. The main program could be

used, in conjunction with some additional routines and possibly

some added hardware, to produce a display on an oscilloscope of

the system wave shapes. In this case nominal delays would be

used for the elements. The major problems would be interfacing

the computer output with the oscilloscope, and "smoothing" the

unequal time increments which occur between transients.

The effects of element packaging on the statistics are

not well known at present, but they are becoming increasingly

more important. The trend in packaging today appears to be

toward more circuits in the same envelope. In the monolithic

circuits discussed here, this means that the circuits in one

envelope would have been fabricated from the same silicon wafer

and manufactured under identical environments. It is reasonable

220
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that the assumption of statistical independence used herein would

be much less valid for elements in the same envelope. A suitable

field for further investigation would be the nature of the correla-

tion between elements in the same envelope and the means for

introducing the effects of the correlation into the computer

program.
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Convolution by Means of Impulses

It is a well known theorem from probability (see, for

example, Davenport and Root 13, page 36 ) that the probability

density function of the sum of two statistically independent random

variables is obtained by convolving the two input density functions.

That is, if

Z(t) = X(t) + Y (t) (A-l)

then

the usual conditions,

taken, yielding

pz(t) = Px(T) py (t-T) dT. (A-g)

If the functions can be represented by curves which fulfill

the Laplace transform of equation A-2 may be

P (S)= P (S) (A 3)z x Py(S)

If now both sides of equation A-3 are multiplied by S 2 {t obtains

SZ P (S) = S P (S) $ P (S) (A-4)
z x y

I
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If there exists a time tO such that for all t < tO, p_.(t),

!

py(t)andPx(t)alongwithPz (t)areallequalto0,thentheinverse

Laplace transform of equation A-4 may be taken yielding:

,, ;T ,Pz (t) = Px (T) py: (t-T) dT (A-5)

-t--O_)

Repeated applications of the above principles can yield the following

useful result:

If there exists a value of time t o

Px(t), py(t),

then;

such that for all t < to;

pz(t) and all the higher order derivatives are zero,

• _x _ kpzj+k(t) = (T) py (t-T) dT (A-6)

where the superscripts refer to the order of the derivative.

If the input density functions can be at least piecewise

approximated by an Nth order power function, it is only necessary

to differentiate it N + 1 times to produce a train of weighted im-

pulses. The convolution of the impulse trains is merely a matter

of adding the ordinates and multiplying the weights. The resultant

pulse train is then the Mth derivative of the sum density function

!
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and can be easily evaluated by integration. The process is perhaps

best illustrated by a simple numerical example. Consider in

Figure A-1 the two density functions for the variables x(t) and y(t),

possibly representing propagation delays through cascaded logic

elements. The derivatives can be expressed as follows:

1

p'(x) = Y, a2 I (t-tj) a0 _ 1
j=O J 100

t O = 300

-1

al - 100 tl = 400

(A-7)

1
1

p'(y) = Z h. k I (t-tk) b0 = 2--_
k=0

to = 250

-i

bl - 250 tI = 500

(A-S)

Convolution is obtained by taking each impulse of p'(x)

and multiplying its strength by each impulse of p'(y) in turn and

placing it at an ordinate which is the sum of the ordinates of the

impulses involved

1,1

p"(z) = E Cjk I [ t-(tj + tk) ]
j,k=0,0

(A-9)

I
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Px
(t)

300

1/100

400

!

P x (t)

py(t) 250

1/100

-1/lOO[

500

!

p y(t)
11250

t

-1/250 [

Figure A- 1

,, [550
p (z)

(a) Input Density Functions and Their

Derivatives 1/25,000165O 800 9O0
i

I-_ I-_
25, 000 25,000

p(-.)

550
.mr

f

/6_o

jt
f

Figure A-I (b) Output Density Function Derivativ_es and

Integration

Figure A-1 Impulse Convolution Example
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jk

O0

Cjk t.j + t k

1
550

25,000

-t
01 800

25,000

-1
10 650

25,000

1
11 900

25,000

Since the desired result is usually p(z) it is necessary to

doubley integrate equation A-9 which yields

1,1

p(z) = j,k =_'0,0 cjk [ t-(tj+tk) ] U[ t - (tj+tk) ] (A-IO)

U(x) = unit step

which is shown also in Figure A-1.

This result can easily be generalized to where the 1th

th
derivative of p(x) was required along with the m-- derivative of

p(y), in that case

1 1 +k-1

p(z) - (l+k-1)! _" Cjk [ t - (tj+tk) ] U[ t - (tj+tk) ] (A-11)

I



|@

I

I
I

I

I

I
I

I
I
I
I

I
I
i

I
I
I

I

227

Any reader with further interest in this technique is

referred to Ouillemin 14 for an excellent treatment especially on the

accuracy of curve fitting, and to Gray 4 for an interesting design

application.

The arguments in this appendix are based on the fact

that the probability density functions in question can be satisfactorily

represented by curves which are Laplace transformable. In most

cases of interest this is true. However, a more rigorous derivaticm

4
is contained in Appendix II of Gray's book.
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Appendix B. A Derivation

It is desired to show that:

M

M _2 2[ _:2+ + ] <_ z _ (B-l)
j= 1 3

Since the case M = 2 is trivial (_1 = _- ' _2 = _ +) it

will be assumed that M > 2 and also thatM is even. IfM is odd

and the last element in the chain is unsorted, the result is merely

the addition of a term _ to each side of equation B-1. It may be

helpful to refer to Figure B. 1 in what follows.

Consider, first, the lower sort, it will be shown that:

M 2 M/2 2

_- _. < 2:; _. (B-2)
j= 1 3

Note that from equation 2.6,

M

2" _- = Ill +_2 + " " +_M/2 (B-B)

Squaring yields

2 )2 2)2(p.)2 = ( 1_ (_1 +P'2 " " P'M/ (B-4)

I
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p(6 )

m

(a) A Sort by Two's

I

I

I

_I _2 _3 _4_5_6 _7 _8

(b) A Possible Sort with MEven,

Shown Only.

Lower Half

Figure B.I Reference Sketch for the Derivation
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Substituting into B-Z, and rearranging, yields

M MI2 2 + 2)Z
o __ _ z _j " (_I "'" _NI

y=l

(B -5)

or equivalently

M/2 M/2
M 2

I) E _.. - 2 E ktB-6l''
0 __ (_" - j=l 3 j=l,k,=j %__

Consider the function

M/2 - 1 2 (B-7)
0 _- z (_j - _k)

j=l k j

M

will have each_j2 appearing ( _-_- 1 ) times andThis

each cross product term appears once with a negative sign. Thus

B-7 is equivalent to B-6 and equation B-2 is proven.

A similar method shows that

M
M 2 2

<__ m _. (B-S)
-_ W.+ j=M/ 2 3

adding equations B-8 and B-2 yields

M

2 2 (B-9)M Z + _ ] < _
[ _+ - - j=l J

I
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Appendix C. The Generation of Random Delays

C. 1 A Random Number Generator for the DDP-II6

There is a well known 15' 16 algorithm for the generation

of a string of pseudo-random numbers given by

x 5 K (rood2 N) (C.1)R. = R
j j-1

.th
where R. = j-- random number in the string

J

N = number of binary positions in R.
J

K = largest odd number such that5 K< 2N-1

R 0 is chosen to be any odd number.

The sequence of random numbers so generated is

periodic with period 2N-2 and will be uniformly distributed.

In the DDP-116, if single precision is used to generate

13
the random numbers, the period will be 2 (or 8192)_ double

precision on the other hand yields a period of 228 (or 268,435, 456).

For applications of any appreciable size, the double precision

seems desirable, so that a program for double precision was

preferred.

I
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a value of K =

is given by

232

511 230 513< <

ii
ii was chosen. IfM denotes 5 thenM in octal

M = 03022,07335 (c.2)

To use the double precision in the DDP-116, each

number is considered to be the sum of two 15 digit numbers as is

shown in the following example:.

M = 03022 00000

or more briefly,

M = M 1 ¢ + CM 2

+ 00000 07335

(c.3)

The ¢ in equation (C. 3) represents a block of 15 binary

zeroes. M 1 andM 2 represent the 15 most significant digits

(MSD) and 15 least significant digits (LSD) respectively of M.

Similarly

R : R ¢+¢ (c.4)j jl Rj2"

Rj+I

The sixty bit result of multiplying M and R. is given by:
J

: [Ml_jl] ¢¢+¢[M1Rj2]¢ + ¢ [M2Rjl] ¢+¢¢[M2Rj2] (C.5)

where the brackets represent the results of the normal machine

I
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multiplication of 15 digit words. Since the algorithm requires

multiplication rood 230 the 30 most significant places are thrown

away and we can write the new random number as

Rj+ 1 = 1R(j+I)I _ + _R(j+I)2 (C.6)

where R(j+I)2 = the LSD of [ M2Rj2 ]

R(j+I)I = the LSD of [ M1Rjl ] plus the LSD of

[ M21Rjl ) plus the MSD of [ M2Rj2 ]

The double precision generation, it should be stressed,

was chosen to obtain a large period for the pseudo-random string

of numbers. For the applications of this thesis 215 (or 32, 768)

different numbers were considered sufficient, sothat only Rjl

was used in the Monte Carlo analysis itself. Rjl was selected

over 1Rj2 because the numbers become more random toward the

middle.

The subroutine developed is given below. It is assumed

that R 0, the initial value, is present in memory locations RA and

RB for Rjl and Rj2 respectively. It is sometimes desirable if, for

example, an experiment is to be repeated, to begin at an arbitrary

I
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starting point. If more randomness of starting point is desired the

real time clock could be made negative and used as an initial

value.

LA BE L

RGEN

OPERATION ADDRESS

DAC **

LDA = '03022

MPY RB

IAB

STA TMPI

LDA RA

MPY = '07325

IAB

ADD TMP 1

SSP

STA TMPI

LDA = '07 325

MPY RB

ADD TMPI

SSP

STA RA

IAB

COMMENT

Store Exit Address

Load M1 into accumulator

Form [ M I Rj2 ]

Pick LSD

Store in TMPI

Load RA into accumulator

Form [ Rjl M 2 ]

Pick LSD

Add to previous result

Ignore overflow

Store in TMPI

M 2

Pick MSD of [ RjZ M 2 ]

Add to previous result

Ignore overflow

R('j+l )l

Pick LSD of[ ajz M 2 ]

I
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STA RB R(j+I)2

LDA RA R(j+I)I into accumulator

JMP* RGEN EXIT

The subroutine shown was implemented and tested.

In figure C.I, the results of a run of 25,000 numbers are

shown. The "goodness of fit" (Chi squared test) on runs

of this type was approximately 90%.

Note that the round off process used in tabula-

tion has made a trapezoidal effect at the edges. The work

uniform in this thesis will generally refer also to these

trapezoidal density functions.

C.2 Distributions other than Uniform

The random number generator previously described

generates numbers to a uniform distribution. By suitable

manipulation, it can also be used to produce random numbers

fitted to other density functions. Use is made of the fact

that, if the random variable y is a monotonic function of

the random variable x then;

p(y) = p(x) dx (C.7)
dy

I
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Considering p(x) to be the uniform density generated

by the pseudo-random number generator and p(y) to be the desired

density function, the relation can be integrated and a relation

between y and x evolved. The technique is best illustrated by an

example.

Suppose it is desired to produce numbers having a

sloped distribution as is shown in Figure C. 2.

Here

p(x) = 1 0 < x < 1

= 0 elsewhere

p(y) = p(a) + m(y-a)

where m is the slope of the line.

Using equation (C. 7) it follows that

[p(a)+ m(y-a)] dy = dx

Upon integr ation

p(a) (y-a) +
m

_ (y-a)z = x+ c

(c.8)

(c.9)
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,p(a)

_(Y)

b

Y

MBAR = b - a

p(b)-b(a)

Figure C.2 Sloped Density Function Parameters
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If we impose the condition that at x = O, y = a then c = O.

A second check is obtained by requiring that at x = 1, y = b, then

rrl

c = p(a)(b - a)+ _-(b- a)z - 1 (c.10)

- mNote that p(a) = b-a 2

then c = 1- m _u:--_2 m 2

z + _ (b-a)- 1 - 0

The required relationship is then:

(y a)Z + Z (y a) p(a) Z..... x = 0 _c.11_
m m _-- ---g

which when solved for y-a yields

il

y-a-- -_e_) + _ + z_
m m m (C. 12)

Since we require that y=a for x=0, the positive sign is

selected.

Thus, if m, a, and p(a) are given each value of x

produced by the pseudo random number generator can be used to

produce a value of y. This procedure was implemented on the

DDP-116 using the program shown below. Most of the complexity

I
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occurs because the routine is double precision,

and fraction portion of the number separately.

treating the integer

Also the available

square root subroutine assumes that the number to be rooted is a

left or left minus 1 justified fraction. Assume that x(X), I(MBAR),

a(A), and p(a) (PA) are present in memory

RET1

CRA

STA SHCT

LDA PA

MPY MBAR

STA INT 1

SMI

JMP PLSI

IAB

SSM

STA FRC1

LDA X

MPY MBAR

LLS 1

STA INT2

SMI

Initialize shift counter to zero

Form p(a)/m

Load MSD in INT1

Check sign

If sign positive go to PLS1

If sign negative make sign

of LSD negative too

Load LSD into FRC1

Form x/m

2x
double. Now --

m

Load MSD into INT2

Check sign MSD

I
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RET2

GO

JMP

lAB

SSM

STA

LDA

MPY

lAB

ADD

STA

LDA

MPY

LLS

ADD

STA

IAB

ADD

SSC

JMP

IRS

SSP

STA

LDA

PLS2

FRC2

INT l

INT 1

INT2

INT2

INT 1

FRCI

1

INT2

INT2

FRC2

GO

INT2

FRC2

FRCI
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If positive go to PLS2

If negative make sign of LSD

negative too

StOre LSD in FRC2

Form (p(a) )2 MSD xMSD
m

Add to MSD of 2x/m

Store in INT2

Form (P(_)) LSD x MSD
m

Double

Add MSD of result to INT2

Add LSD of result to FRC2

Check for overflow

If no overflow, jump to GO

If overflow, Add l to INT2

Set sign of LSD Positive
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LOAD

PREP

MPY

ADD

SSC

JMP

IRS

SSP

STA

lAB

LDA

SZE

JMP

LDA

TCA

ANA

STA

LDA

ANA

ERA

STA

IAB

ANA

CALL

FRCI

FRC2

LOAD

INT2

FRC2

INT2

SHIF

SHCT

='77

TEMP

VSHF

=_177700

TEMP

VSI4_F

='177776

SQRX2
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Form (p(a))2 LSD x LSD
m

Add MSD of result into FRC2

Check overflow

If no overflow

If overflow add I to INT2

Set sign FRC2 positive

Set up double precision number

for square rooting

In integer non-zero go to SHIF

Number of de-normalizing shifts

Extract number of shifts after

rooting

Extract order type

Create variable shift instruction

Load accumulator

Extract out pathological case
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VSHF

PLPL

IAB

LLS

SUB

STA

LDA

SMI

JMP

IAB

SUB

SSC

JMP

IRS

SSP

JMP

IAB

SUB

STA

SMI

JMP

TCA

STA

LDA

INT 1

INT

FRCI

PLPL

FRCI

EXIT

INT

EXIT

FRCI

FRC

,_+6

FRC

INT
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Treat as fraction

De -normalize

Form y-a

MSD into INT

Test for negative

Difference of two positive num-

bers.

If negative load with fractional

part of root

Positive number minus negative

Check for overflow

If no overflow

If overflow increment INT

Change sign

Load with fractional part of root

Test against FRCI

Test for negative

If positive

Form 1 - fraction



I °

I
I

I
I

I

I
I

I
I

I
I

I

I
I

I
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EXIT

PLSI

PLSZ

SHIF

SUB =I

STA INT

LDA FRC

SUB ='40000

SPL

RETURN

IRS INT

RETURN

IAB

JMP RET 1

IAB

JMP RET2

LRS Z

IRS SHCT

SZE

JMP SHIF

JMP PREP

Z44

Decrement INT

Round off

Round off

Result is in INT

Add 2 to INT

Result is in INT

Normalize - number to be

rooted to a fraction, saving
number of double shifts re-

quired.

As it stands the integral portion of the number y is

stored in INT, if full double precision is needed the round-off

could be skipped and the number left in INT and FRC.

I
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The results of generation of 25, 000 numbers with

m = 1/2048, and a = 10 is shown in Figure C.3.

Figure C.4 shows the result of generating a triangular

density function by adding successive samples from a uniform

distribution of one half the width. Since the uniform density is

actually trapezoidal due to round-off, it is expected that there

will be rounding at the peak and at the extreme points.

C. 3 An Example of Serial Correlation

It is axiomatic that man learns from his mistakes.

What follows is the result of an error which occurred in the work

of this thesis and it illustrates some of the problems associated

with the use of random number generating algorithms.

During the preparation of the random number generator

previously discussed a mechanical mistake in the computation of

the highest odd power of 5 was made, and for a time, instead of

0302207335 (octal) the octal number 1454372001 was used as a

multiplier. When it was tested for uniformity, it was approximately

as good as the results shown in Figures C 3 and C.2. However,

when it was desired to test the result of convolving three uniform

density functions (or for that matter any multiple of three) the data

i
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in Figure C. 5 was obtained.
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Note the "periodicity" of the results. It is as if there

were a use_ then a decay for two units. This effect is due to serial

correlation and it is an effect which must be guarded against in

Monte Carlo techniques. Basically, when three successive

numbers generated by the algorithm are added, certain sums rood

6 are preferred over others. The user should be on the alert for

phenomena of this nature. Steps outlined in Chapter III may be

required.

There will be an excellent treatment of random number

generating algorithms and their pathology in a forthcoming book

17
by Knuth.
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Figure C.5 An Example of Serial Correlation
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The Applicability of the Simulator to Other Elements

D. 1 General

It is noted that many digital systems will contain other

types of elements than those discussed in the main body of the

thesis. It is felt that most of the customarily utilized digital

elements can be produced by combining element processors of the

type discussed in detail. Several examples are listed below:

D. 2 RST Flip-Flop with Steering Gate:Inputs

This can be handled by redefining the RST element to

have five inputs:

1) A Reset Input,

2) Reset Level input,

3) Set Input,

4) Set Level Input,

5) Toggle Input.

If the entries on card input list are arranged in this

order, the main program modifications are relatively simple.

Now, no distinction is required between RS and JK elements on

the basis of inputs and the S element processor would have INCT
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always set to five.

The new flow chart for the RST element is shown in

Figure D.I. The reader will note that the effect of the changes

relative to Figures 4.30 and 4.31 are:

(i) Atransient on any level input is ignored.

(2) A positive transient on the set input requires,

in addition to the earlier requirement that the circuit

be reset, that the set level input also be I.

(3) Similarly, a positive transient on the reset input

now also requires a 1 on the reset level input.

D. 3 Delay Multivibrator Element (DMV)

The delay multivibrator can be considered a combination

of a one-input gate and an external level. The gate corresponding

to the input could be treated as any other gate in the matrix,

except that when its input is stimulated by a transient of the proper

polarity it does not go into a transient state. Instead of a clock

word, the corresponding word in the matrix line for the gate would

indicate which of the P lines was to be triggered. The P line

would be the same as that of a single pulse, the initial delay would

correspond to propagation delay in the multivibrator and Dl would

I
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Figure D.I RST Flip-Flop with Steering Gate

Flow Chart Modification
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be the duration of the monostable pulse. Thus, the triggering of

the gate part would cause an entry into CLK in the position of the

corresponding P line, along with the insertion of storage word one

into the clock word of the P line.

It would be desirable to have the propagation delay and

the monostable pulse duration subject to statistical variations.

This could be done by utilizing one of the unused bits in the P line

label to indicate that the parameters in this P line are subject to

statistics. This would of course require the use of a D card.

These monostable multivibrators could be designated

as M elements and loaded into the computer either before or after

the G cards. They would appear on the T cards and cause the

number of P lines reserved in the matrix to be equal to P + M.

Thus after the processing of the P cards, MATL would be aug-

mented by M multiplied by MINC, and the G and M cards processed.

As each M card was processed one of the previously skipped P

lines would be used.

This would require a special label. Two possibilities

come readily to mind. First the unused combination of both bits

9 and 16 of the label being l's. A second possibility is to restrict

I
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the number of inputS:toagate to eight or less, then bit 10 in the

gate label becomes available.

It should be noted that although a single input gate was

assumed in the preceding discussion, there is nothing in the pro-

cessing to prevent any type of gate, AND or OR from being used.

NAND and NOR are possible, but pointless since no external input

is drawn off.

D.4 A GPG element

This is a rather specialized case of the DMV element

discussed above. This is essentially a DMV with an input gate

which contains both transient and level inputs. This could be

handled by using two matrix lines for the gate portion of the

multivibrator. One matrix line would be for the level input, the

other for the transient input. Stimulation of the level input would

produce no effect while the presence of a transient of proper

polarity on the transient input would require that a 1 be present

on the level input. Processing would be identical to that of the set

or reset inputs in the discussion of the modified RST discussed

above.

i
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D. 5 A Majority Element

This could be treated in a manner analogous to an AND

GATE. A special subroutine could be created and summoned by a

label code. An extra bit could be obtained by removing the redun-

dancy among the ON, STATUS, and INVERT bits. This bit would

be used in the label examination to jump to a subroutine whose

function would be to scan the inputs to the element and ascertain

whether a majority were l's or not.

of the element an exit could be made,

transient could be killed.

Then, depending on the state

a transient initiated, or a

If the element is not of the simple majority type,

provision would have to be made for expansion of the label to

indicate somewhere the critical number of active inputs required

to fire the element.
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Appendix E. Flow Chart Conventions

Operation Block

(I) Regardless of

where the entry point

joins the block,

input s

the complete block is executed

in sequence.

(2) Mnemonics enclosed by parentheses indicate

indirect addressing, otherwise reference is to

contents of the mnemonic.

Symbols

(i) _-

(2)+

(3) -

(4)x

(s) +

(6)•

(7)

replacement

addition (arithmetic)

subtraction (arithmetic)

multiplication (arithmetic)

division (arithmetic)

16gical ahd

ring sum
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I Z57

I (8) ACC accumulator*

(9) 'XX XX are expressed in octal

!

I _ Deci__ic_n Bl____.ck _ INPUT

(_,_ocoo_eot_._-_x __>_--_
I _:_are always phrased as

I

I

a question.

(Z) The exits are each labelled as possible answers

to the question in the block.

I

I

I

I

I

I

E.4 Note s

(1) Output operations are normally not detailed,

merely indicated as, for example, TYPE "FLAG"

which causes the ASR-33 to type out FLAG.

(2) Similarly, input operations are not normally

detailed as for example READ A CARD causes the

card reader to read a card.

I

I

I
The DDP-116 contains a double accumulator for multiplication
and division. Unless otherwise noted the flow charts refer to

the digits of interest regardless of register location.

I

I
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(3) In blocks immediately following an input instru-

tion, the character input is referred to by its letter

or numeral rather than

any special input code.

As an example the chart

at the right asks whether

the column read contains

NO

the symbol "C".

YES
L_
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